版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
Robotic arm path planning in complex, unstructured environments often suffers from challenges such as excessive sampling randomness, low search efficiency, and redundant path nodes. To address these shortcomings, this paper introduces multi-mode dynamic sampling rapidly-exploring random tree (MMD-RRT), an enhanced path planning method based on the RRT algorithm. MMD-RRT dynamically adjusts its sampling strategy and step size in response to obstacles. key improvements include: (1) a novel multi-mode dynamic sampling strategy that effectively reduces the randomness of sample points; (2) a dynamic window with variable step sizes designed to adapt to diverse environments and improve search efficiency; and (3) path optimization using a greedy strategy to eliminate redundant nodes. Experimental results show that, compared to traditional algorithms in unstructured environments, MMD-RRT reduces path length by an average of 24.89% and search time by an average of 75.90%. Validation using an XArm6 robotic arm confirms the algorithm's ability to generate effective obstacle avoidance paths, ensuring the robot completes tasks safely and efficiently.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论