咨询与建议

限定检索结果

文献类型

  • 1,720 篇 会议
  • 1,025 篇 期刊文献

馆藏范围

  • 2,745 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,760 篇 工学
    • 972 篇 计算机科学与技术...
    • 845 篇 软件工程
    • 469 篇 控制科学与工程
    • 329 篇 信息与通信工程
    • 240 篇 生物工程
    • 238 篇 电气工程
    • 223 篇 机械工程
    • 195 篇 电子科学与技术(可...
    • 191 篇 生物医学工程(可授...
    • 164 篇 光学工程
    • 99 篇 化学工程与技术
    • 92 篇 仪器科学与技术
    • 75 篇 材料科学与工程(可...
    • 68 篇 交通运输工程
    • 65 篇 动力工程及工程热...
    • 45 篇 力学(可授工学、理...
    • 40 篇 安全科学与工程
    • 38 篇 航空宇航科学与技...
  • 1,082 篇 理学
    • 594 篇 数学
    • 273 篇 生物学
    • 272 篇 物理学
    • 181 篇 系统科学
    • 163 篇 统计学(可授理学、...
    • 97 篇 化学
  • 389 篇 管理学
    • 257 篇 管理科学与工程(可...
    • 138 篇 图书情报与档案管...
    • 68 篇 工商管理
  • 130 篇 医学
    • 107 篇 临床医学
    • 84 篇 基础医学(可授医学...
    • 69 篇 药学(可授医学、理...
  • 44 篇 法学
  • 33 篇 农学
  • 25 篇 经济学
  • 21 篇 教育学
  • 10 篇 军事学
  • 8 篇 文学
  • 4 篇 艺术学
  • 2 篇 哲学

主题

  • 102 篇 feature extracti...
  • 67 篇 training
  • 56 篇 semantics
  • 52 篇 computational mo...
  • 47 篇 image segmentati...
  • 43 篇 object detection
  • 39 篇 convolution
  • 39 篇 optimization
  • 38 篇 deep learning
  • 37 篇 accuracy
  • 36 篇 robustness
  • 34 篇 machine learning
  • 32 篇 stability analys...
  • 31 篇 predictive model...
  • 31 篇 mathematical mod...
  • 30 篇 neural networks
  • 28 篇 support vector m...
  • 28 篇 simulation
  • 28 篇 image processing
  • 27 篇 control systems

机构

  • 121 篇 fujian provincia...
  • 116 篇 shanghai enginee...
  • 115 篇 department of au...
  • 113 篇 key laboratory o...
  • 83 篇 school of artifi...
  • 70 篇 key laboratory o...
  • 57 篇 school of automa...
  • 52 篇 fujian provincia...
  • 52 篇 shaanxi key labo...
  • 50 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 38 篇 shaanxi key labo...
  • 36 篇 key laboratory o...
  • 33 篇 shenzhen huazhon...
  • 31 篇 key laboratory o...
  • 26 篇 department of co...
  • 26 篇 shaanxi key labo...
  • 26 篇 alibaba group

作者

  • 72 篇 li zuoyong
  • 64 篇 wu dongrui
  • 63 篇 sang nong
  • 59 篇 zhang fuquan
  • 53 篇 gao changxin
  • 50 篇 zeng zhigang
  • 46 篇 jiao licheng
  • 45 篇 zhigang zeng
  • 43 篇 jian huang
  • 36 篇 yongji wang
  • 36 篇 pan linqiang
  • 35 篇 huang jian
  • 34 篇 zuoyong li
  • 32 篇 licheng jiao
  • 32 篇 cao zhiguo
  • 31 篇 wang hesheng
  • 30 篇 hai-tao zhang
  • 30 篇 guan xinping
  • 29 篇 ding liu
  • 29 篇 wang yongji

语言

  • 2,350 篇 英文
  • 341 篇 其他
  • 64 篇 中文
检索条件"机构=Key Laboratory of Image Information Processing and Intelligent Control"
2745 条 记 录,以下是1491-1500 订阅
排序:
Modelling brain based on canonical ensemble with functional MRI: A thermodynamic exploration on neural system
arXiv
收藏 引用
arXiv 2021年
作者: Li, Wei Zhou, Chenxi Yang, Bin Fan, Wenliang Chen, Xi School of Artificial Intelligence and Automation Huazhong University of Science and Technology WuhanHubei430074 China Image Processing and Intelligent Control Key Laboratory of the Education Ministry of China WuhanHubei430074 China Department of Radiology Union Hospital Tongji Medical College Huazhong University of Science and Technology WuhanHubei430074 China
Objective. Modelling is an important way to study the working mechanism of brain. While the characterization and understanding of brain are still inadequate. This study tried to build a model of brain from the perspec... 详细信息
来源: 评论
Global Rice Multi-Class Segmentation Dataset (RiceSEG): A Comprehensive and Diverse High-Resolution RGB-Annotated images for the Development and Benchmarking of Rice Segmentation Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Junchi Wang, Haozhou Kato, Yoichiro Nampally, Tejasri Rajalakshmi, P. Balram, M. Katsura, Keisuke Lu, Hao Mu, Yue Yang, Wanneng Gao, Yangmingrui Xiao, Feng Chen, Hongtao Chen, Yuhao Li, Wenjuan Wang, Jingwen Yu, Fenghua Zhou, Jian Wang, Wensheng Hu, Xiaochun Yang, Yuanzhu Ding, Yanfeng Guo, Wei Liu, Shouyang Engineering Research Center of Plant Phenotyping Ministry of Education Jiangsu Collaborative Innovation Center for Modern Crop Production Academy for Advanced Interdisciplinary Studies Sanya Institute of Nanjing Agricultural University Nanjing Agricultural University Nanjing China Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan Department of Artificial Intelligence Indian Institute of Technology Hyderabad India Department of Electrical Engineering Indian Institute of Technology Hyderabad India Institute of Biotechnology Professor Jayashankar Telangana Agricultural State University Hyderabad India Graduate School of Agriculture Kyoto University Kyoto Japan Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China National Key Laboratory of Crop Genetic Improvement National Center of Plant Gene Research Hubei Key Laboratory of Agricultural Bioinformatics Huazhong Agricultural University Wuhan China State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China the Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China Center for Geospatial Information Shenzhen Institutes of Advanced Technology Chinese Academy of Science Shenzhen China School of Information and Electrical Engineering Shenyang Agricultural University Shenyang China Rice Research Institute Jilin Academy of Agricultural Sciences Changchun China Institute of Crop Sciences National Key Facility for Crop Gene Resources and Genetic Improvement Chinese Academy of Agricultural Sciences Beijing China Yuan Long Ping High-Tech Agriculture Co. Ltd. Changsha China
Developing computer vision–based rice phenotyping techniques is crucial for precision field management and accelerating breeding, thereby continuously advancing rice production. Among phenotyping tasks, distinguishin... 详细信息
来源: 评论
Probabilistic Robust Parity Relation based Fault Detection Using Biased Minimax Probability Machine ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 646-651页
作者: Yujia Ma Yiming Wan Maiying Zhong Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan 430074 China College of Electrical Engineering and Automation Shangdong University of Science and Technology Qingdao 266590 China
This paper proposes a probabilistic robust parity relation based approach to fault detection of stochastic linear systems. Instead of assuming exact knowledge of disturbance distribution, the uncertainty of distributi... 详细信息
来源: 评论
Spatial non-locality induced non-markovian EIT in a single giant atom
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Y.T. Wu, R.B. Xue, S. Department of Automation Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China Department of Automation Tsinghua University Beijing100084 China Beijing National Research Center for Information Science and Technology Beijing100084 China
In recent experiments, electromagnetically induced transparency (EIT) were observed with giant atoms, but nothing unconventional were found from the transmission spectra. In this letter, we show that unconventional EI... 详细信息
来源: 评论
3D Hierarchical Refinement and Augmentation for Unsupervised Learning of Depth and Pose from Monocular Video
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Guangming Zhong, Jiquan Zhao, Shijie Wu, Wenhua Liu, Zhe Wang, Hesheng Department of Automation Institute of Medical Robotics Key Laboratory of System Control and Information Processing Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai200240 China Department of Engineering Mechanics Shanghai Jiao Tong University Shanghai200240 China Department of Computer Science and Technology University of Cambridge CambridgeCB2 1TN United Kingdom
Depth and ego-motion estimations are essential for the localization and navigation of autonomous robots and autonomous driving. Recent studies make it possible to learn the per-pixel depth and ego-motion from the unla... 详细信息
来源: 评论
A Learning Convolutional Neural Network Approach for Network Robustness Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Lou, Yang Wu, Ruizi Li, Junli Wang, Lin Li, Xiang Chen, Guanrong The Department of Computing and Decision Sciences Lingnan University Hong Kong The Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China The College of Computer Science Sichuan Normal University Chengdu610066 China The Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Institute of Complex Networks and Intelligent Systems Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201210 China The Department of Control Science and Engineering Tongji University Shanghai200240 China The Department of Electrical Engineering City University of Hong Kong Hong Kong
Network robustness is critical for various societal and industrial networks again malicious attacks. In particular, connectivity robustness and controllability robustness reflect how well a networked system can mainta... 详细信息
来源: 评论
An Improved Result on Stabilization of Switched Linear Systems with Time-varying Delay ⁎
收藏 引用
IFAC-PapersOnLine 2021年 第18期54卷 96-101页
作者: Tan Hou Yuanlong Li Zongli Lin Department of Automation Shanghai Jiao Tong University Shanghai 200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai 200240 China and Shanghai Engineering Research Center of Intelligent Control and Management Shanghai 200240 China Charles L. Brown Department of Electrical and Computer Engineering University of Virginia P.O. Box 400743 Charlottesville VA 22904-4743 U.S.A.
This paper revisits the stabilization problem of switched linear systems with time-varying delay via state dependent switching strategies. In contrast to the existing works, the commonly adopted stable convex combinat... 详细信息
来源: 评论
An End-to-End Network for Single image Dedusting
An End-to-End Network for Single Image Dedusting
收藏 引用
International Conference on information Science and control Engineering (ICISCE)
作者: Jiayan Huang Zhaochai Yu Zuoyong Li Xiangpan Zheng Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Control Engineering Minjiang University Fuzhou China College of Mathematics and Computer Science Fuzhou University Fuzhou China
Dust storm not only reduces visibility of natural scene, but also affects capture capability of outdoor monitoring equipment. image dedusting aims to remove dust storm in images and make image scenes clearer. However,... 详细信息
来源: 评论
Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks
Edge-Aware Graph Attention Network for Ratio of Edge-User Es...
收藏 引用
International Conference on Pattern Recognition
作者: Jiehui Deng Sheng Wan Xiang Wang Enmei Tu Xiaolin Huang Jie Yang Chen Gong PCA Lab the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Hong Kong Polytechnic University Hong Kong SAR China
Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, wh... 详细信息
来源: 评论
Artificial intelligence-based methods for renewable power system operation
Nature Reviews Electrical Engineering
收藏 引用
Nature Reviews Electrical Engineering 2024年 第3期1卷 163-179页
作者: Yuanzheng Li Fei Hu Juntao Duan Yong Zhao Zhigang Zeng Yizhou Ding Shangyang He Guanghui Wen Hua Geng Zhengguang Wu Hoay Beng Gooi Chenghui Zhang Shengwei Mei Key Laboratory of lmage Information Processing and Intelligent Control of Ministry of Education of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China National Key Laboratory of Multispectral Information Intelligent Processing Technology Huazhong University of Science and Technology Wuhan China China-EU Institute for Clean and Renewable Energy Huazhong University of Science and Technology Wuhan China Department of Systems Science School of Mathematics Southeast University Nanjing China Department of Automation Tsinghua University Beijing China State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and Control Zhejiang University Hangzhou China School of Electrical and Electronics Engineering Nanyang Technological University Singapore Singapore School of Control Science and Engineering Shandong University Jinan China Department of Electrical Engineering Tsinghua University Beijing China
Carbon neutrality goals are driving the increased use of renewable energy (RE). Large-scale use of RE requires accurate energy generation forecasts; optimized power dispatch, which minimizes costs while satisfying ope...
来源: 评论