咨询与建议

限定检索结果

文献类型

  • 616 篇 会议
  • 469 篇 期刊文献

馆藏范围

  • 1,085 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 731 篇 工学
    • 397 篇 计算机科学与技术...
    • 341 篇 软件工程
    • 195 篇 控制科学与工程
    • 119 篇 电气工程
    • 106 篇 生物医学工程(可授...
    • 98 篇 机械工程
    • 94 篇 生物工程
    • 91 篇 信息与通信工程
    • 86 篇 电子科学与技术(可...
    • 79 篇 光学工程
    • 42 篇 仪器科学与技术
    • 38 篇 化学工程与技术
    • 27 篇 航空宇航科学与技...
    • 25 篇 力学(可授工学、理...
    • 25 篇 动力工程及工程热...
    • 24 篇 交通运输工程
    • 17 篇 材料科学与工程(可...
  • 440 篇 理学
    • 261 篇 数学
    • 103 篇 物理学
    • 99 篇 生物学
    • 82 篇 系统科学
    • 67 篇 统计学(可授理学、...
    • 38 篇 化学
  • 155 篇 管理学
    • 113 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 70 篇 医学
    • 61 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 39 篇 药学(可授医学、理...
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 10 篇 农学
  • 9 篇 法学
  • 5 篇 教育学
  • 5 篇 军事学
  • 4 篇 文学
  • 1 篇 哲学
  • 1 篇 艺术学

主题

  • 32 篇 feature extracti...
  • 26 篇 training
  • 20 篇 image segmentati...
  • 18 篇 multi-agent syst...
  • 17 篇 deep learning
  • 17 篇 electroencephalo...
  • 17 篇 machine learning
  • 16 篇 ultrasonic imagi...
  • 15 篇 neural networks
  • 15 篇 semantics
  • 14 篇 object detection
  • 13 篇 computational mo...
  • 13 篇 image processing
  • 12 篇 support vector m...
  • 12 篇 optimization
  • 12 篇 memristors
  • 12 篇 multi agent syst...
  • 11 篇 biomedical imagi...
  • 11 篇 mathematical mod...
  • 11 篇 robustness

机构

  • 81 篇 school of artifi...
  • 56 篇 school of automa...
  • 41 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 26 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 department of co...
  • 17 篇 department of au...
  • 17 篇 institute of ima...
  • 16 篇 key laboratory o...
  • 13 篇 school of artifi...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 11 篇 key laboratory o...

作者

  • 61 篇 wu dongrui
  • 48 篇 zeng zhigang
  • 47 篇 zhigang zeng
  • 39 篇 ding mingyue
  • 32 篇 cao zhiguo
  • 32 篇 mingyue ding
  • 26 篇 housheng su
  • 26 篇 xi li
  • 24 篇 su housheng
  • 23 篇 sang nong
  • 20 篇 yongji wang
  • 19 篇 jian huang
  • 18 篇 li xi
  • 18 篇 huang jian
  • 18 篇 li wei
  • 18 篇 wang yongji
  • 17 篇 wang xiaoping
  • 17 篇 peng gang
  • 16 篇 jian liu
  • 16 篇 gao changxin

语言

  • 1,015 篇 英文
  • 47 篇 其他
  • 23 篇 中文
检索条件"机构=Key Laboratory of Image Processing and Intelligence Control of Ministry of Education"
1085 条 记 录,以下是391-400 订阅
排序:
A Born-Again Takagi-Sugeno-Kang Fuzzy Classifier with Decoupled Fuzzy Dark Knowledge Distillation
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Xiongtao Yin, Zezong Jiang, Yunliang Jiang, Yizhang Sun, Danfeng Liu, Yong School of Information Engineering Huzhou University Huzhou31300 China Zhejiang Key Laboratory of Intelligent Education Technology and Application Zhejiang Normal University Jinhua321004 China School of Computer Science and Technology Zhejiang Normal University Jinhua321004 China School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Key Laboratory of Image Processing and Intelligent Control Huazhong University of Science and Technology Ministry of Education Wuhan430074 China School of Computer Science Hangzhou Dianzi University Hangzhou310018 China College of Control Science and Engineering Zhejiang University Hangzhou310027 China
In order to enpower the hight performance as well as interpretability of low-order TSK fuzzy classifier, a born-again TSK fuzzy classier embedded with decoupled fuzzy dark knowledge distillation called HTSK-LLM-DKD is... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning  39
Modeling Inter-Intra Heterogeneity for Graph Federated Learn...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Engineering Research Center of Trustworthy AI Ministry of Education Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Exploiting Distilled Learning for Deep Siamese Tracking
Exploiting Distilled Learning for Deep Siamese Tracking
收藏 引用
International Conference on Pattern Recognition
作者: Chengxin Liu Zhiguo Cao Wei Li Yang Xiao Shuaiyuan Du Angfan Zhu Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Queen Mary University of London
Existing deep siamese trackers are typically built on off-the-shelf CNN models for feature learning, with the demand for huge power consumption and memory storage. This limits current deep siamese trackers to be carri... 详细信息
来源: 评论
RLSAC: Reinforcement Learning enhanced Sample Consensus for End-to-End Robust Estimation
RLSAC: Reinforcement Learning enhanced Sample Consensus for ...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Chang Nie Guangming Wang Zhe Liu Luca Cavalli Marc Pollefeys Hesheng Wang Department of Automation Key Laboratory of System Control and Information Processing of Ministry of Education Shanghai Jiao Tong University Department of Computer Science ETH Zürich MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Microsoft Mixed Reality and AI Zürich Lab
Robust estimation is a crucial and still challenging task, which involves estimating model parameters in noisy environments. Although conventional sampling consensus-based algorithms sample several times to achieve ro...
来源: 评论
Reliability on deep learning models: A comprehensive observation  6
Reliability on deep learning models: A comprehensive observa...
收藏 引用
6th International Symposium on System and Software Reliability, ISSSR 2020
作者: Zhang, Yuhong Xiao, Chunjing School of Artificial Intelligence and Big Data Key Laboratory of Grain Information Processing and Control Ministry of Education Zhengzhou China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China
This paper provides a comprehensive observation to examine the reliability of deep learning (DL) models. First, we will briefly introduce the essential background and kernel techniques in deep learning, such as downsa... 详细信息
来源: 评论
RegFormer: An Efficient Projection-Aware Transformer Network for Large-Scale Point Cloud Registration
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Jiuming Wang, Guangming Liu, Zhe Jiang, Chaokang Pollefeys, Marc Wang, Hesheng Department of Automation Key Laboratory of System Control and Information Processing of Ministry of Education Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China China University of Mining and Technology China ETH Zürich Switzerland Microsoft United States
Although point cloud registration has achieved remarkable advances in object-level and indoor scenes, large-scale registration methods are rarely explored. Challenges mainly arise from the huge point number, complex d... 详细信息
来源: 评论
​A Shape-Supervised Feature Fusion U-Net for Tubular Structure Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Yue, Jinghua Jin, Shuo Wang, Siyuan Zeng, Jianping Shan, Siqiao Liu, Bo Jiang, Nan Zhou, Fugen Image Processing Center Beihang University Beijing China Hepatopancreatobiliary Center Beijing Tsinghua Changgung Hospital Key Laboratory of Digital Intelligence Hepatology Ministry of Education School of Clinical Medicine Tsinghua University Beijing China Research Unit of Precision Hepatobiliary Surgery Paradigm Chinese Academy of Medical Sciences Beijing China Institute for Precision Medicine Tsinghua University Beijing China
Accurate segmentation of tubular structures, such as blood vessels and bile ducts, is pivotal for clinical diagnosis and subsequent treatment. However, challenges arise from their thin elongated structures, complex mo... 详细信息
来源: 评论
An advanced actor-critic algorithm for training video game ai  1st
An advanced actor-critic algorithm for training video game a...
收藏 引用
1st International Conference on Neural Computing for Advanced Applications, NCAA 2020
作者: Zha, Zhong Yi Tang, Xue Song Wang, Bo Key Laboratory of Ministry of Education for Image Processing and Intelligent Control Artificial Intelligence and Automation School Huazhong University of Science and Technology Wuhan430074 China College of Information and Science Donghua University Shanghai China
This paper presents an improved deep reinforcement learning (DRL) algorithm, namely Advanced Actor Critic (AAC), which is based on Actor Critic (AC) algorithm, to the video game Artificial intelligence (AI) training. ... 详细信息
来源: 评论
Discovering the nuclear localization signal universe through a deep learning model with interpretable attention units
Patterns
收藏 引用
Patterns 2025年 第6期6卷
作者: Li, Yi-Fan Pan, Xiaoyong Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
We describe NLSExplorer, an interpretable approach for nuclear localization signal (NLS) prediction. By utilizing the extracted information on nuclear-specific sites from the protein language model to assist in NLS de... 详细信息
来源: 评论
Memristor-based multilayer neural network with edge learning and weight update
收藏 引用
Neurocomputing 2025年 647卷
作者: Ningye Jiang Jupeng Xie Mingxuan Jiang Haoen Huang Zhigang Zeng School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan 430074 China Key Laboratory of Image Information Processing and Intelligent Control Ministry of Education of China Wuhan 430074 China
Memristor crossbar array (MCA) is a promising computing-in-memory architecture for accelerating vector-matrix multiplication (VMM). However, existing memristor-based circuits primarily perform forward computations wit... 详细信息
来源: 评论