咨询与建议

限定检索结果

文献类型

  • 2,031 篇 会议
  • 1,153 篇 期刊文献

馆藏范围

  • 3,184 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,066 篇 工学
    • 1,126 篇 计算机科学与技术...
    • 988 篇 软件工程
    • 508 篇 控制科学与工程
    • 384 篇 信息与通信工程
    • 285 篇 电气工程
    • 279 篇 生物工程
    • 256 篇 机械工程
    • 240 篇 电子科学与技术(可...
    • 239 篇 生物医学工程(可授...
    • 213 篇 光学工程
    • 128 篇 化学工程与技术
    • 116 篇 仪器科学与技术
    • 86 篇 交通运输工程
    • 82 篇 材料科学与工程(可...
    • 72 篇 动力工程及工程热...
    • 55 篇 力学(可授工学、理...
    • 50 篇 航空宇航科学与技...
    • 47 篇 土木工程
  • 1,236 篇 理学
    • 679 篇 数学
    • 330 篇 物理学
    • 312 篇 生物学
    • 189 篇 系统科学
    • 184 篇 统计学(可授理学、...
    • 125 篇 化学
  • 445 篇 管理学
    • 285 篇 管理科学与工程(可...
    • 165 篇 图书情报与档案管...
    • 79 篇 工商管理
  • 164 篇 医学
    • 134 篇 临床医学
    • 111 篇 基础医学(可授医学...
    • 87 篇 药学(可授医学、理...
  • 51 篇 法学
  • 41 篇 农学
  • 28 篇 经济学
  • 26 篇 教育学
  • 12 篇 军事学
  • 9 篇 文学
  • 8 篇 艺术学
  • 2 篇 哲学

主题

  • 125 篇 feature extracti...
  • 81 篇 training
  • 69 篇 image segmentati...
  • 64 篇 semantics
  • 56 篇 computational mo...
  • 47 篇 object detection
  • 47 篇 accuracy
  • 46 篇 deep learning
  • 45 篇 optimization
  • 41 篇 convolution
  • 41 篇 machine learning
  • 40 篇 robustness
  • 37 篇 support vector m...
  • 37 篇 predictive model...
  • 36 篇 neural networks
  • 36 篇 mathematical mod...
  • 35 篇 clustering algor...
  • 34 篇 stability analys...
  • 34 篇 image processing
  • 31 篇 heuristic algori...

机构

  • 122 篇 fujian provincia...
  • 115 篇 shanghai enginee...
  • 113 篇 department of au...
  • 112 篇 key laboratory o...
  • 85 篇 school of artifi...
  • 68 篇 key laboratory o...
  • 60 篇 school of automa...
  • 55 篇 guangxi key labo...
  • 52 篇 fujian provincia...
  • 52 篇 key laboratory o...
  • 52 篇 shaanxi key labo...
  • 48 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 38 篇 key laboratory o...
  • 37 篇 shaanxi key labo...
  • 36 篇 shenzhen huazhon...
  • 36 篇 key laboratory o...
  • 31 篇 key laboratory o...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...

作者

  • 72 篇 li zuoyong
  • 63 篇 wu dongrui
  • 62 篇 sang nong
  • 58 篇 zhang fuquan
  • 51 篇 gao changxin
  • 50 篇 zeng zhigang
  • 48 篇 jiao licheng
  • 44 篇 zhigang zeng
  • 44 篇 jian huang
  • 43 篇 yongji wang
  • 38 篇 huang jian
  • 37 篇 ding mingyue
  • 37 篇 pan linqiang
  • 34 篇 zuoyong li
  • 33 篇 cao zhiguo
  • 33 篇 mingyue ding
  • 33 篇 wang yongji
  • 32 篇 licheng jiao
  • 30 篇 hai-tao zhang
  • 30 篇 chen cailian

语言

  • 3,045 篇 英文
  • 76 篇 其他
  • 64 篇 中文
  • 3 篇 德文
  • 3 篇 法文
  • 1 篇 日文
检索条件"机构=Key Laboratory of Image Processing and Intelligent Control"
3184 条 记 录,以下是3091-3100 订阅
排序:
Tigc-Net: Transformer-Improved Graph Convolution Network for Spatio-Temporal Prediction
SSRN
收藏 引用
SSRN 2022年
作者: Chen, Kai Yang, Chunfeng Zhou, Zhengyuan Liu, Yao Ji, Tianjiao Sun, Weiya Chen, Yang School of Cyber Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing210096 China The College of Software Engineering Southeast University Nanjing210096 China Laboratory of Image Science and Technology The School of Computer Science and Engineering Southeast University Nanjing210096 China Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology Zhongda Hospital Southeast University Nanjing210009 China Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing School of Computer Science and Engineering Southeast University Nanjing210096 China NHC Key Laboratory of Medical Virology and Viral Diseases National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing China Beijing Institute of Tracking and Communication Technology Beijing100094 China
Modeling spatio-temporal sequences is an important topic yet challenging for existing neural networks. Most of the current spatio-temporal sequence prediction methods usually capture features separately in temporal an... 详细信息
来源: 评论
A review of big data technology and its application in cancer care
收藏 引用
Computers in Biology and Medicine 2024年 176卷 108577-108577页
作者: Xiao, Tianyun Kong, Shanshan Zhang, Zichen Hua, Dianbo Liu, Fengchun Hebei Key Laboratory of Data Science and Application North China University of Science and Technology Hebei Tangshan063210 China The Key Laboratory of Engineering Computing in Tangshan City North China University of Science and Technology Hebei Tangshan063210 China College of Science North China University of Science and Technology Hebei Tangshan063210 China Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes North China University of Science and Technology Hebei Tangshan China Tangshan Intelligent Industry and Image Processing Technology Innovation Center North China University of Science and Technology Hebei Tangshan China Beijing Sitairui Cancer Data Analysis Joint Laboratory Beijing101149 China
The development of modern medical devices and information technology has led to a rapid growth in the amount of data available for health protection information, with the concept of medical big data emerging globally,... 详细信息
来源: 评论
A Learning Convolutional Neural Network Approach for Network Robustness Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Lou, Yang Wu, Ruizi Li, Junli Wang, Lin Li, Xiang Chen, Guanrong The Department of Computing and Decision Sciences Lingnan University Hong Kong The Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China The College of Computer Science Sichuan Normal University Chengdu610066 China The Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Institute of Complex Networks and Intelligent Systems Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201210 China The Department of Control Science and Engineering Tongji University Shanghai200240 China The Department of Electrical Engineering City University of Hong Kong Hong Kong
Network robustness is critical for various societal and industrial networks again malicious attacks. In particular, connectivity robustness and controllability robustness reflect how well a networked system can mainta... 详细信息
来源: 评论
SPP-CNN: An Efficient Framework for Network Robustness Prediction
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Chengpei Lou, Yang Wang, Lin Li, Junli Li, Xiang Chen, Guanrong The College of Computer Science Sichuan Normal University Chengdu610066 China The Key Laboratory of System Control and Information Processing Ministry of Education Shanghai200240 China The Department of Computer Science National Yang Ming Chiao Tung University Hsinchu300 Taiwan The Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Institute of Complex Networks and Intelligent Systems Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201210 China The Department of Control Science and Engineering Tongji University Shanghai200240 China The Department of Electrical Engineering City University of Hong Kong Hong Kong
This paper addresses the robustness of a network to sustain its connectivity and controllability against malicious attacks. This kind of network robustness is typically measured by the time-consuming attack simulation... 详细信息
来源: 评论
A method for detecting floating objects on water based on edge computing
A method for detecting floating objects on water based on ed...
收藏 引用
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)
作者: He Li Shuaipeng Yang Jinjiang Liu Honglin Fang Zhumu Fu Rui Zhang Huimei Jia Lianmeng Lv Henan Costar Group Co. Ltd Nanyang Henan China College of Information Engineering Henan University of Science and Technology Luoyang Henan China Henan Engineering Research Center of Intelligent Processing for Big Data of Digital Image School of Computer Science and Technology Nanyang Normal University Nanyang China State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunication Beijing China Xi'an Hengpin Electronic Technology Co. Ltd Xi’an China
With the development and application of computer vision, many target detection networks are applied to the detection of floating objects in rivers. For the detection problems such as small targets easily missed and mi...
来源: 评论
PUGAN: Physical Model-Guided Underwater image Enhancement Using GAN with Dual-Discriminators
arXiv
收藏 引用
arXiv 2023年
作者: Cong, Runmin Yang, Wenyu Zhang, Wei Li, Chongyi Guo, Chun-Le Huang, Qingming Kwong, Sam Institute of Information Science Beijing Jiaotong University Beijing100044 China School of Control Science and Engineering Shandong University Jinan250061 China Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan250061 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China College of Computer Science Nankai University Tianjin300350 China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China Department of Computer Science City University of Hong Kong Hong Kong City University of Hong Kong Shenzhen Research Institute Shenzhen51800 China
Due to the light absorption and scattering induced by the water medium, underwater images usually suffer from some degradation problems, such as low contrast, color distortion, and blurring details, which aggravate th... 详细信息
来源: 评论
Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report
arXiv
收藏 引用
arXiv 2021年
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Computer Vision Lab ETH Zurich Switzerland Ltd AI Witchlabs Switzerland Tencent GY-Lab China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Nanjing Artificial Intelligence Chip Research Institute of Automation Chinese Academy of Sciences China Black Sesame Technologies Inc. Singapore Singapore Visual Media Lab KAIST Korea Republic of Harbin Institute of Technology China Peng Cheng Laboratory China Multimedia and Computer Vision Laboratory National Cheng Kung University Taiwan Samsung Research UK United Kingdom OPPO Research Institute China ETH Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Deep Rank-Consistent Pyramid Model for Enhanced Crowd Counting
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Jiaqi Huang, Zhizhong Lei, Yiming Shan, Hongming Wang, James Z. Wang, Fei-Yue Zhang, Junping The Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China The Institute of Science and Technology for Brain-inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai201210 China The College of Information Sciences and Technology The Pennsylvania State University University ParkPA16802 United States The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The Institute of Systems Engineering Macau University of Science and Technology China Qingdao Academy of Intelligent Industries Qingdao266109 China
Most conventional crowd counting methods utilize a fully-supervised learning framework to establish a mapping between scene images and crowd density maps. They usually rely on a large quantity of costly and time-inten... 详细信息
来源: 评论
Privacy-preserving medical treatment system through nondeterministic finite automata
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Yang Deng, Robert H. Liu, Ximeng Wu, Yongdong Weng, Jian Zheng, Xianghan Rong, Chunming School of Information Systems Singapore Management University Singapore College of Mathematics and Computer Science Fuzhou University Fujian China State Key Laboratory of Integrated Services Networks Xidian University Guangdong Provincial Key Laboratory of Data Security and Privacy Protection Guangzhou China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou China School of Information Systems Singapore Management University Singapore Singapore Department of Computer Science Jinan University Guangdong China College of Mathematics and Computer Science Fuzhou University Fujian China Department of Electronic Engineering and Computer Science University of Stavanger Norway MingByte Technology Qingdao China
In this paper, we propose a privacy-preserving medical treatment system using nondeterministic finite automata (NFA), hereafter referred to as P-Med, designed for the remote medical environment. P-Med makes use of the... 详细信息
来源: 评论