The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three mai...
详细信息
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, ...
详细信息
Shaoqing Wang1, Xiancun Yang2, Meixia Su1, Qiang Liu1 1Department of MRI, Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of C...
详细信息
Shaoqing Wang1, Xiancun Yang2, Meixia Su1, Qiang Liu1 1Department of MRI, Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China; 2Department of Interventional Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China Correspondence: Qiang Liu (2002md@***) Aims To evaluate the diagnostic value of three- dimensional rotational angiography (3D-RA) of intracranial micro-aneurysms (diameter ≤ 3 mm) and provide guidance on the value of endovascular treatment. Materials and methods 43 patients with intracranial micro-aneurysms were analyzed retrospectively, all patients had undergone angiography with both conventional 2D-DSA(Two-Dimensional Digital Subtraction Angiography) and rotational angiography with three-dimensional reconstruction; the frequency of detection of aneurysms, depiction of aneurysm neck, radiation dose, and the dosage of contrast agent were recorded respectively. Results 55 pieces of aneurysms were detected out from the 43 cases with intracranial micro-aneurysms by 3D-RA. But only 39 cases were detected out using 2D-DSA from the 55 samples, there were significant differences with regards to detection rate (P < 0.05). There were significant differences in radiation dose and dosage of contrast agent (P < 0.05) between the two methods of using 3D-RA can improve the detection rate of micro-aneurysms, which bestows obvious advantages on displaying the shape of aneurysms, the aneurysm neck at the best angle, and the relationship with the parent artery, at the same time, the amount of contrast agent and radiation dose are reduced in 3D-RA compared to 2D-DSA.
作者:
Omid ShakerniaYi MaT. John KooShankar SastryDept. of Electrical Engineering & Computer Science
University of California at Berkeley Berkeley CA94720-1774 U.S.A. Tak-Kuen John Koo received the B.Eng. degree in 1992 in Electronic Engineering and the M.Phil. in 1994 in Information Engineering both from the Chinese University of Hong Kong. From 1994 to 1995
he was a graduate student in Signal and Image Processing Institute at the University of Southern California. He is currently a Ph.D. Candidate in Electrical Engineering and Computer Sciences at the University of California at Berkeley. His research interests include nonlinear control theory hybrid systems inertial navigation systems with applications to unmanned aerial vehicles. He received the Distinguished M.Phil. Thesis Award of the Faculty of Engineering The Chinese University of Hong Kong in 1994. He was a consultant of SRI International in 1998. Currently he is the team leader of the Berkeley AeRobot Team and a delegate of The Graduate Assembly University of California at Berkeley. He is a student member of IEEE and SIAM. S. Shankar Sastry received his Ph.D. degree in 1981 from the University of California
Berkeley. He was on the faculty of MIT from 1980-82 and Harvard University as a Gordon McKay professor in 1994. He is currently a Professor of Electrical Engineering and Computer Sciences and Bioengineering and Director of the Electronics Research Laboratory at Berkeley. He has held visiting appointments at the Australian National University Canberra the University of Rome Scuola Normale and University of Pisa the CNRS laboratory LAAS in Toulouse (poste rouge) and as a Vinton Hayes Visiting fellow at the Center for Intelligent Control Systems at MIT. His areas of research are nonlinear and adaptive control robotic telesurgery control of hybrid systems and biological motor control. He is a coauthor (with M. Bodson) of “Adaptive Control: Stability Convergence and Robustness Prentice Hall 1989.” and (with R. Murray and Z. Li) of “A Mathematical Introduction to Robotic Manipulati
In this paper, we use computer vision as a feedback sensor in a control loop for landing an unmanned air vehicle (UAV) on a landing pad. The vision problem we address here is then a special case of the classic ego-mot...
详细信息
In this paper, we use computer vision as a feedback sensor in a control loop for landing an unmanned air vehicle (UAV) on a landing pad. The vision problem we address here is then a special case of the classic ego-motion estimation problem since all feature points lie on a planar surface (the landing pad). We study together the discrete and differential versions of the ego-motion estimation, in order to obtain both position and velocity of the UAV relative to the landing pad. After briefly reviewing existing algorithm for the discrete case, we present, in a unified geometric framework, a new estimation scheme for solving the differential case. We further show how the obtained algorithms enable the vision sensor to be placed in the feedback loop as a state observer for landing control. These algorithms are linear, numerically robust, and computationally inexpensive hence suitable for real-time implementation. We present a thorough performance evaluation of the motion estimation algorithms under varying levels of image measurement noise, altitudes of the camera above the landing pad, and different camera motions relative to the landing pad. A landing controller is then designed for a full dynamic model of the UAV. Using geometric nonlinear control theory, the dynamics of the UAV are decoupled into an inner system and outer system. The proposed control scheme is then based on the differential flatness of the outer system. For the overall closed-loop system, conditions are provided under which exponential stability can be guaranteed. In the closed-loop system, the controller is tightly coupled with the vision based state estimation and the only auxiliary sensor are accelerometers for measuring acceleration of the UAV. Finally, we show through simulation results that the designed vision-in-the-loop controller generates stable landing maneuvers even for large levels of image measurement noise. Experiments on a real UAV will be presented in future work.
暂无评论