咨询与建议

限定检索结果

文献类型

  • 573 篇 会议
  • 268 篇 期刊文献

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 563 篇 工学
    • 354 篇 计算机科学与技术...
    • 312 篇 软件工程
    • 146 篇 信息与通信工程
    • 104 篇 光学工程
    • 85 篇 控制科学与工程
    • 72 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 56 篇 电子科学与技术(可...
    • 53 篇 机械工程
    • 46 篇 电气工程
    • 38 篇 化学工程与技术
    • 29 篇 仪器科学与技术
    • 23 篇 交通运输工程
    • 17 篇 土木工程
    • 16 篇 航空宇航科学与技...
    • 15 篇 建筑学
    • 11 篇 材料科学与工程(可...
    • 10 篇 安全科学与工程
  • 344 篇 理学
    • 190 篇 数学
    • 121 篇 物理学
    • 81 篇 生物学
    • 65 篇 统计学(可授理学、...
    • 36 篇 化学
    • 24 篇 系统科学
  • 130 篇 管理学
    • 71 篇 图书情报与档案管...
    • 66 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 31 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 10 篇 法学
  • 10 篇 艺术学
  • 8 篇 农学
  • 6 篇 经济学
  • 5 篇 军事学
  • 4 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 62 篇 feature extracti...
  • 42 篇 image segmentati...
  • 42 篇 image processing
  • 41 篇 pattern recognit...
  • 25 篇 training
  • 23 篇 support vector m...
  • 23 篇 computer vision
  • 21 篇 object detection
  • 21 篇 laboratories
  • 21 篇 shape
  • 19 篇 convolution
  • 19 篇 principal compon...
  • 18 篇 image edge detec...
  • 17 篇 face recognition
  • 17 篇 image analysis
  • 17 篇 image reconstruc...
  • 16 篇 histograms
  • 16 篇 robustness
  • 15 篇 discrete wavelet...
  • 14 篇 semantics

机构

  • 74 篇 image processing...
  • 36 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 state key labora...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 17 篇 school of softwa...
  • 16 篇 institute for pa...
  • 15 篇 fujian key labor...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 12 篇 key laboratory o...
  • 11 篇 college of compu...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 institute of pat...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 32 篇 zhang tianxu
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 20 篇 jie yang
  • 19 篇 tian jinwen
  • 19 篇 liu jian
  • 18 篇 yunhong wang
  • 16 篇 ding mingyue
  • 15 篇 zhaoxiang zhang
  • 15 篇 jinwen tian
  • 15 篇 jian liu
  • 13 篇 zhou jie
  • 13 篇 li qishen
  • 13 篇 tianxu zhang
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi

语言

  • 811 篇 英文
  • 21 篇 中文
  • 9 篇 其他
检索条件"机构=Key Laboratory of Image Processing and Pattern Recognition"
841 条 记 录,以下是11-20 订阅
排序:
DFL: cross-view cross-layer discriminative feature learning for fine-grained 3D shape classification
收藏 引用
Neural Computing and Applications 2025年 1-22页
作者: Jiang, Jinzhe Bai, Jing Ma, Xiangyu The School of Computer Science and Engineering North Minzu University Yinchuan China The Key Laboratory of Images Processing and Pattern Recognition Laboratory North Minzu University Yinchuan China
Fine-grained 3D shape classification poses challenges in effectively capturing and integrating discriminative features residing in subtle local regions. Previous methods typically extract features independently from i...
来源: 评论
FG3DFormer: Fine-Grained 3D Shape Classification Based on Vision Transformer
FG3DFormer: Fine-Grained 3D Shape Classification Based on Vi...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Xiangyu Ma Jing Bai Jinzhe Jiang Bin Peng The School of Computer Science and Engineering North Minzu University The Key Laboratory of Images Processing and Pattern Recognition Laboratory Yinchuan China
Fine-grained 3D shape classification (FGSC) remains challenging due to the difficulty of adaptively capturing global structure differences and subtle inter-class distinctions. This paper directly extends Vision Transf... 详细信息
来源: 评论
Visual Prompt Flexible-Modal Face Anti-Spoofing
收藏 引用
IEEE Transactions on Dependable and Secure Computing 2025年 第3期22卷 2597-2606页
作者: Yu, Zitong Cai, Rizhao Cui, Yawen Liu, Ajian Chen, Changsheng Great Bay University School of Computing and Information Technology Dongguan523000 China Nanyang Technological University ROSE Lab School of EEE 639798 Singapore Hong Kong Polytechnic University Kowloon Hong Kong Chinese Academy of Sciences University of Chinese Academy of Sciences National Laboratory of Pattern Recognition Institute of Automation Beijing100190 China Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security College of Electronics and Information Engineering Shenzhen518060 China
Recently, vision transformer based multimodal learning methods have been proposed to improve the robustness of face anti-spoofing (FAS) systems. However, multimodal face data collected from the real world is often imp... 详细信息
来源: 评论
Discovering the nuclear localization signal universe through a deep learning model with interpretable attention units
Patterns
收藏 引用
patterns 2025年
作者: Li, Yi-Fan Pan, Xiaoyong Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
We describe NLSExplorer, an interpretable approach for nuclear localization signal (NLS) prediction. By utilizing the extracted information on nuclear-specific sites from the protein language model to assist in NLS de... 详细信息
来源: 评论
OCR4HSV: A Multi-task Learning Approach for Handwritten Signature Verification  27th
OCR4HSV: A Multi-task Learning Approach for Handwritten Sig...
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Lin, Chao-Qun Wang, Da-Han Su, Yan-Fei Ge, De-Wu Zhang, Xu-Yao School of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China Xiamen KEYTOP Communication Technology Co. Xiamen361024 China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation of Chinese Academy of Sciences Beijing100190 China
Handwritten signature verification (HSV) models are notably recognized for their ability to discern whether a signature is forged in an offline document. Recently, HSV technology has made significant develop... 详细信息
来源: 评论
C2DFL: cross-view cross-layer discriminative feature learning for fine-grained 3D shape classification
收藏 引用
Neural Computing and Applications 2025年
作者: Jiang, Jinzhe Bai, Jing Ma, Xiangyu The School of Computer Science and Engineering North Minzu University Yinchuan750021 China The Key Laboratory of Images Processing and Pattern Recognition Laboratory North Minzu University Yinchuan750021 China
Fine-grained 3D shape classification poses challenges in effectively capturing and integrating discriminative features residing in subtle local regions. Previous methods typically extract features independently from i... 详细信息
来源: 评论
DLS-HCAN: Duplex Label Smoothing Based Hierarchical Context-Aware Network for Fine-grained 3D Shape Classification
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Bai, Shaojin Zheng, Liang Bai, Jing Ma, Xiangyu North Minzu University School of Computer Science and Engineering Yinchuan750021 China Liupanshan Laboratory Yinchuan750021 China North Minzu University Key Laboratory of Images Processing and Pattern Recognition LaboratoryCommission: IPPRLab Yinchuan750021 China
Fine-grained 3D shape classification (FGSC) has garnered significant attention recently and has made notable advancements. However, due to high inter-class similarity and intra-class diversity, it is still a challenge... 详细信息
来源: 评论
TNIE-SLAM: Neural Implicit Surface Reconstruction for Tracking-Oriented SLAM
收藏 引用
Journal of Intelligent & Robotic Systems 2025年 第2期111卷 1-22页
作者: Gan, Baolin Zhang, Congxuan Chen, Shuaixin Chen, Zhen He, Chao Lu, Ke Lu, Feng School of Instrument Science and Optoelectronic Engineering Nanchang Hangkong University Nanchang China Jiangxi Provincial Key Laboratory of Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang China School of Information Engineering Nanchang Hangkong University Nanchang China The College of Engineering Science University of Chinese Academy of Sciences Beijing China
Recent studies on simultaneous localization and mapping (SLAM) have tended to employ implicit neural representation, which can improve the efficiency and robustness of SLAM system. However, these methodologies still f... 详细信息
来源: 评论
A Research Mode Based Evolutionary Algorithm for Many-Objective Optimization
收藏 引用
Chinese Journal of Electronics 2019年 第4期28卷 764-772页
作者: CHEN Guoyu LI Junhua Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University
The development of algorithms to solve Many-objective optimization problems(MaOPs) has attracted significant research interest in recent *** various types of Pareto front(PF) is a daunting challenge for evolutionary a... 详细信息
来源: 评论
Efficient image Super-Resolution With Feature Interaction Weighted Hybrid Network
收藏 引用
IEEE Transactions on Multimedia 2025年 27卷 2256-2267页
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Yang, Jian Qi, Guo-Jun Lin, Chia-Wen Beijing University of Posts and Telecommunications Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing100080 China Shanghai University School of Communication and Information Engineering Shanghai200444 China Nanjing University of Posts and Telecommunications IVIPLab Institute of Advanced Technology Nanjing210046 China Ministry of Education Key Laboratory of Artificial Intelligence Shanghai200240 China Soochow University Provincial Key Laboratory for Computer Information Processing Technology Suzhou215006 China Nanjing University of Science and Technology School of Computer Science and Technology Nanjing210094 China Westlake University Research Center for Industries of the Future School of Engineering Hangzhou310024 China OPPO Research SeattleWA98101 United States National Tsing Hua University Department of Electrical Engineering Institute of Communications Engneering Hsinchu300044 Taiwan
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs. However, existing methods result in the loss of middle-layer features due to acti... 详细信息
来源: 评论