咨询与建议

限定检索结果

文献类型

  • 573 篇 会议
  • 268 篇 期刊文献

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 563 篇 工学
    • 354 篇 计算机科学与技术...
    • 312 篇 软件工程
    • 146 篇 信息与通信工程
    • 104 篇 光学工程
    • 85 篇 控制科学与工程
    • 72 篇 生物工程
    • 57 篇 生物医学工程(可授...
    • 56 篇 电子科学与技术(可...
    • 53 篇 机械工程
    • 46 篇 电气工程
    • 38 篇 化学工程与技术
    • 29 篇 仪器科学与技术
    • 23 篇 交通运输工程
    • 17 篇 土木工程
    • 16 篇 航空宇航科学与技...
    • 15 篇 建筑学
    • 11 篇 材料科学与工程(可...
    • 10 篇 安全科学与工程
  • 344 篇 理学
    • 190 篇 数学
    • 121 篇 物理学
    • 81 篇 生物学
    • 65 篇 统计学(可授理学、...
    • 36 篇 化学
    • 24 篇 系统科学
  • 130 篇 管理学
    • 71 篇 图书情报与档案管...
    • 66 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 35 篇 医学
    • 31 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 10 篇 法学
  • 10 篇 艺术学
  • 8 篇 农学
  • 6 篇 经济学
  • 5 篇 军事学
  • 4 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 62 篇 feature extracti...
  • 42 篇 image segmentati...
  • 42 篇 image processing
  • 41 篇 pattern recognit...
  • 25 篇 training
  • 23 篇 support vector m...
  • 23 篇 computer vision
  • 21 篇 object detection
  • 21 篇 laboratories
  • 21 篇 shape
  • 19 篇 convolution
  • 19 篇 principal compon...
  • 18 篇 image edge detec...
  • 17 篇 face recognition
  • 17 篇 image analysis
  • 17 篇 image reconstruc...
  • 16 篇 histograms
  • 16 篇 robustness
  • 15 篇 discrete wavelet...
  • 14 篇 semantics

机构

  • 74 篇 image processing...
  • 36 篇 institute of ima...
  • 23 篇 fujian key labor...
  • 22 篇 school of inform...
  • 18 篇 state key labora...
  • 18 篇 school of comput...
  • 17 篇 key laboratory o...
  • 17 篇 school of softwa...
  • 16 篇 institute for pa...
  • 15 篇 fujian key labor...
  • 13 篇 school of comput...
  • 12 篇 hubei key labora...
  • 12 篇 hubei engineerin...
  • 12 篇 key laboratory o...
  • 11 篇 college of compu...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 school of electr...
  • 9 篇 institute of pat...

作者

  • 64 篇 ping guo
  • 35 篇 yang jie
  • 32 篇 zhang tianxu
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang da-han
  • 23 篇 huang xiaolin
  • 20 篇 jie yang
  • 19 篇 tian jinwen
  • 19 篇 liu jian
  • 18 篇 yunhong wang
  • 16 篇 ding mingyue
  • 15 篇 zhaoxiang zhang
  • 15 篇 jinwen tian
  • 15 篇 jian liu
  • 13 篇 zhou jie
  • 13 篇 li qishen
  • 13 篇 tianxu zhang
  • 12 篇 da-han wang
  • 12 篇 zhu shunzhi

语言

  • 811 篇 英文
  • 21 篇 中文
  • 9 篇 其他
检索条件"机构=Key Laboratory of Image Processing and Pattern Recognition"
841 条 记 录,以下是711-720 订阅
排序:
Mountain landslide monitoring based on wireless sensor network
收藏 引用
Information Technology Journal 2013年 第15期12卷 3357-3362页
作者: Li, Xiaoling Yuan, Jimin School of Computer Science and Technology Chengdu University 610106 Chengdu China University Key Laboratory of Pattern Recognition Intelligent Information Processing 610106 Chengdu China Department Computer Engineering Chengdu Aeronautic Vocational and Technical College Chengdu 610000 China
The study provides a design scheme for the mountain landslide monitoring System based on wireless sensor networks. Different sensors are mainly used to collect data about the water depth in the soil and the sloping an... 详细信息
来源: 评论
Oracle character recognition by nearest neighbor classification with deep metric learning  15
Oracle character recognition by nearest neighbor classificat...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Zhang, Yi-Kang Zhang, Heng Liu, Yong-Ge Yang, Qing Liu, Cheng-Lin National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun East Road Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Center for Excellence of Brain Science and Intelligence Technology Beijing China School of Computer & Information Engineering Anyang Normal University Henan China Key Laboratory of Oracle Bone Inscriptions Information Processing Ministry of Education Henan China
Oracle character is one kind of the earliest hieroglyphics, which can be dated back to Shang Dynasty in China. Oracle character recognition is important for modern archaeology, ancient text understanding, and historic... 详细信息
来源: 评论
Automatic needle segmentation using 3D Gray-level Hough Transform in 3D ultrasound images
收藏 引用
Journal of Computational Information Systems 2008年 第5期4卷 2021-2026页
作者: Qiu, Wu Ding, Mingyue Yuchi, Ming Image Processing and Intelligence Control Key Lab. of Education Ministry of China Institute of Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology Wuhan 430074 China Department of Biomedical Engineering School of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
This paper describes a novel 3D needle segmentation algorithm for 3DUS data. The algorithm includes the 3D Gray-level Hough Transform (3DGHT), which is based on the representation (ψ, θ, ρ, α) of straight lines in... 详细信息
来源: 评论
pNovo+: De Novo Peptide Sequencing and Assembly Using Complementary HCD and ETD Tandem Mass Spectra
pNovo+: De Novo Peptide Sequencing and Assembly Using Comple...
收藏 引用
第八届中国蛋白质组学大会
作者: Hao Chi Haifeng Chen Kun He Long Wu Bing Yang Rui-Xiang Sun Jianyun Liu Wen-Feng Zeng Chun-Qing Song Si-Min He Meng-Qiu Dong Key Lab of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China National Institute of Biological SciencesBeijingBeijing 102206China Laboratory of Intelligent Recognition and Image ProcessingBeijing Key Laboratory of Digital MediaBeihang UniversityBeijing100191China
来源: 评论
Cross-media analysis and reasoning: advances and directions
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2017年 第1期18卷 44-57页
作者: Yu-xin PENG Wen-wu ZHU Yao ZHAO Chang-sheng XU Qing-ming HUANG Han-qing LU Qing-hua ZHENG Tie-jun HUANG Wen GAO Institute of Computer Science and Technology Peking University Department of Computer Science and Technology Tsinghua University Institute of Information Science Beijing Jiaotong University National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of Sciences Department of Computer Science and Technology Xi'an Jiaotong University School of Electronics Engineering and Computer Science Peking University
Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the stat... 详细信息
来源: 评论
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
The first nontrivial three color upper domination Ramsey number is 13
收藏 引用
Journal of Combinatorial Mathematics and Combinatorial Computing 2012年 83卷 161-165页
作者: Su, Changming Lang, Fangnian Shao, Zehui School of Information Science and Technology Chengdu University Chengdu 610106 China University Key Laboratory of Pattern Recognition and Intelligent Information Processing Sichuan Province China School of Electronic Engineering University of Electronic Science and Technology of China Chengdu 610054 China
The upper domination Ramsey number u(3, 3, 3) is the smallest integer n such that every 3-coloring of the edges of complete graph Kn contains a monochromatic graph G with T(G) ≥ 3, where T(G) is the maximum order ove... 详细信息
来源: 评论
The Intelligent Preparation of Scene Matching Guidance Reference Map Based on Prior Knowledge
The Intelligent Preparation of Scene Matching Guidance Refer...
收藏 引用
International Conference on Wireless Communications and Signal processing (WCSP)
作者: Pan Chen Yaozong Zhang Jinmeng Wu Xingxun Li School of Electrical Information Wuhan Institute of Technology Wuhan China Hubei Engineering Research Center of Video Image and HD Projection Wuhan China Hubei Key Laboratory of Optical Information and Pattern Recognition Wuhan China
Aiming at the problem that the automatic processing level of reference map preparation in image matching guidance is not high enough, our work proposes a novel reference map preparation based on the prior knowledge su... 详细信息
来源: 评论
Learning with asymmetric kernels: Least squares and feature interpretation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mingzhen He, Fan Shi, Lei Huang, Xiaolin Suykens, Johan A.K. Institute Of Image Processing And Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Shanghai Key Laboratory For Contemporary Applied Mathematics Fudan University Shanghai200433 China School Of Mathematical Sciences Fudan University Shanghai200433 China KU Leuven LeuvenB-3001 Belgium
Asymmetric kernels naturally exist in real life, e.g., for conditional probability and directed graphs. However, most of the existing kernel-based learning methods require kernels to be symmetric, which prevents the u... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论