咨询与建议

限定检索结果

文献类型

  • 53 篇 会议
  • 22 篇 期刊文献

馆藏范围

  • 75 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 39 篇 计算机科学与技术...
    • 37 篇 软件工程
    • 20 篇 信息与通信工程
    • 19 篇 光学工程
    • 10 篇 生物工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 6 篇 电气工程
    • 6 篇 控制科学与工程
    • 6 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
  • 39 篇 理学
    • 23 篇 物理学
    • 17 篇 数学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 化学
    • 1 篇 大气科学
    • 1 篇 地球物理学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 军事学

主题

  • 8 篇 object detection
  • 7 篇 feature extracti...
  • 4 篇 information tech...
  • 4 篇 convolution
  • 3 篇 generative adver...
  • 3 篇 real-time system...
  • 3 篇 semantics
  • 3 篇 fuses
  • 3 篇 high performance...
  • 3 篇 computer vision
  • 2 篇 pulsars
  • 2 篇 conferences
  • 2 篇 semantic segment...
  • 2 篇 automation
  • 2 篇 zero-shot learni...
  • 2 篇 lighting
  • 2 篇 optimization
  • 2 篇 computerized tom...
  • 2 篇 benchmark testin...
  • 2 篇 genetic algorith...

机构

  • 20 篇 school of inform...
  • 17 篇 key laboratory o...
  • 17 篇 school of softwa...
  • 12 篇 key laboratory o...
  • 5 篇 school of mathem...
  • 5 篇 nanchang hangkon...
  • 4 篇 key laboratory o...
  • 3 篇 institute of ima...
  • 3 篇 key laboratory o...
  • 3 篇 key laboratory o...
  • 2 篇 key laboratory o...
  • 2 篇 image processing...
  • 2 篇 jiangxi province...
  • 2 篇 nanchang hangkon...
  • 2 篇 institute of med...
  • 2 篇 school of physic...
  • 2 篇 key laboratory o...
  • 2 篇 nanchang hangkon...
  • 2 篇 key laboratory o...
  • 2 篇 key laboratory o...

作者

  • 13 篇 li qishen
  • 10 篇 qishen li
  • 8 篇 huang hua
  • 7 篇 li qiufeng
  • 5 篇 he zhifen
  • 5 篇 li bo
  • 5 篇 zhihua chen
  • 4 篇 wang kang
  • 4 篇 yang jie
  • 4 篇 wang lihui
  • 4 篇 hua huang
  • 4 篇 liu bin
  • 3 篇 wu taida
  • 3 篇 fu xiang
  • 3 篇 qin yulei
  • 3 篇 ding hui
  • 3 篇 chen weifeng
  • 3 篇 qiufeng li
  • 3 篇 zhang xiaofeng
  • 3 篇 zhu yue-min

语言

  • 73 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province"
75 条 记 录,以下是1-10 订阅
排序:
Automatic Weight Allocation: optimizing remote sensing image retrieval from contrastive learning perspective
收藏 引用
Multimedia Systems 2025年 第3期31卷 1-19页
作者: Wang, Sijia Ge, Yun Liu, Qiyang Zeng, Yan School of Software Nanchang Hangkong University Nanchang China Jiangxi Province Key Laboratory of Image Processing and Pattern Recognition Nanchang China
Traditional supervised learning methods achieve remarkable performance in high-resolution remote sensing image retrieval, but are limited by the dependence on large-scale annotated images. Contrastive learning can lev...
来源: 评论
A Research Mode Based Evolutionary Algorithm for Many-Objective Optimization
收藏 引用
Chinese Journal of Electronics 2019年 第4期28卷 764-772页
作者: CHEN Guoyu LI Junhua Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University
The development of algorithms to solve Many-objective optimization problems(MaOPs) has attracted significant research interest in recent *** various types of Pareto front(PF) is a daunting challenge for evolutionary a... 详细信息
来源: 评论
Segmentation of the Ventricle Membranes in Short-Axis Sequences by Optical Flow Base on DLSRE Model
收藏 引用
Chinese Journal of Electronics 2021年 第3期30卷 460-470页
作者: LI Lin WU Hengfei LI Junhua Department of Electronics and Information Engineering Bozhou University Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University
Recent studies have pointed out that the boundary of the extracted ventricle membranes is unsmooth, and the segmentation of the cardiac papillary muscle and trabecular muscle do inconformity the clinical requirements.... 详细信息
来源: 评论
Deep Learning in Palmprint recognition-A Comprehensive Survey
arXiv
收藏 引用
arXiv 2025年
作者: Gao, Chengrui Yang, Ziyuan Jia, Wei Leng, Lu Zhang, Bob Teoh, Andrew Beng Jin College of Computer Science Sichuan University Chengdu610065 China Singapore School of Computer and Information Hefei University of Technology Hefei China Jiangxi Provincial Key Laboratory of Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang China Pattern Analysis and Machine Intelligence Group Department of Computer and Information Science University of Macau Taipa China School of Electrical and Electronic Engineering College of Engineering Yonsei University Seoul Korea Republic of
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as t... 详细信息
来源: 评论
GFENet: Enabling Attention and Adaptive Feature Fusion in Real-time Object Detection  2
GFENet: Enabling Attention and Adaptive Feature Fusion in Re...
收藏 引用
2nd International Symposium on Electrical, Electronics and Information Engineering, ISEEIE 2022
作者: Pan, Chaolin Zhu, Xiaoyang Chu, Jun Nanchang Hangkong University Department of Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang China
Real-time object detection has been a critical component of onboard instrumentation for next-generation autonomous driving. To enable safety and reliability in autonomous driving systems, we must continue advancing it... 详细信息
来源: 评论
Object Detector based on Enhanced Multi-scale Feature Fusion Pyramid Network  5
Object Detector based on Enhanced Multi-scale Feature Fusion...
收藏 引用
5th IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2021
作者: Zhao, Luan Zhang, Xiaofeng Nanchang Hangkong University Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition School of Information Engineering Nanchang China
Constructing the pyramidal architecture for the feature is currently a very effective way to obtain feature information of objects at different scales. Although the feature pyramid can realize the recognition and dete... 详细信息
来源: 评论
Dense Connected Residual Generative Adversarial Network for Single image Deblurring  5
Dense Connected Residual Generative Adversarial Network for ...
收藏 引用
5th IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2021
作者: Qian, Pan Wu, Yeyun Zhang, Xiaofeng Nanchang Hangkong University School of Information Engineering Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang China
Recently, deep convolutional learning has been applied to image deblurring, which greatly improves the performance of single-image blind deblurring algorithms. However, most deep image deblurring models based on convo... 详细信息
来源: 评论
An efficient multiparty quantum secret sharing scheme using a single qudit
收藏 引用
Chinese Physics B 2023年 第8期32卷 161-170页
作者: 胡文文 熊邦书 周日贵 School of Information Engineering Nanchang Hangkong UniversityNanchang 330063China Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province Nanchang Hangkong UniversityNanchang 330063China College of Information Engineering Shanghai Maritime UniversityShanghai 201306China
The aim of quantum secret sharing,as one of most promising components of quantum cryptograph,is one-tomultiparty secret communication based on the principles of quantum *** this paper,an efficient multiparty quantum s... 详细信息
来源: 评论
An Improved Embedding Model for Zero-Shot Classification based on Attention Mechanism  5
An Improved Embedding Model for Zero-Shot Classification bas...
收藏 引用
5th IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2021
作者: Wu, Zongfeng Li, Qishen Yu, Xiao Peng, Xu Nanchang Hangkong University School of Information Engineering Nanchang Jiangxi China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Jiangxi China
It is well-known that the auxiliary information plays a key role in zero-shot classification. However, most of the existing popular methods do not make effective use of auxiliary information. To address this issue, we... 详细信息
来源: 评论
Cross-GAN: Unsupervised image-to-image Translation  6
Cross-GAN: Unsupervised Image-to-Image Translation
收藏 引用
6th IEEE Information Technology and Mechatronics Engineering Conference, ITOEC 2022
作者: Peng, Xu Li, Qishen Wu, Taida Yuan, Sihao Nanchang Hangkong University School of Information Engineering Jiangxi Nanchang China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Jiangxi Nanchang China
In recent years, unsupervised image-to-image translation is a topic in computer graphics. This paper proposes a new architecture to translate the image through the idea of sharing and decoupling, termed as Cross-GAN, ... 详细信息
来源: 评论