咨询与建议

限定检索结果

文献类型

  • 169 篇 会议
  • 149 篇 期刊文献

馆藏范围

  • 318 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 253 篇 工学
    • 159 篇 计算机科学与技术...
    • 145 篇 软件工程
    • 72 篇 信息与通信工程
    • 50 篇 光学工程
    • 41 篇 生物工程
    • 34 篇 机械工程
    • 30 篇 电气工程
    • 26 篇 生物医学工程(可授...
    • 24 篇 电子科学与技术(可...
    • 21 篇 控制科学与工程
    • 12 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 仪器科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
  • 144 篇 理学
    • 65 篇 数学
    • 51 篇 物理学
    • 45 篇 生物学
    • 23 篇 统计学(可授理学、...
    • 12 篇 化学
    • 11 篇 系统科学
  • 63 篇 管理学
    • 44 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 12 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 11 篇 deep learning
  • 10 篇 training
  • 9 篇 semantics
  • 9 篇 feature extracti...
  • 7 篇 compressed sensi...
  • 7 篇 magnetic resonan...
  • 7 篇 convolution
  • 6 篇 image segmentati...
  • 6 篇 image coding
  • 6 篇 image classifica...
  • 6 篇 image reconstruc...
  • 5 篇 semantic segment...
  • 5 篇 face recognition
  • 5 篇 optimization
  • 5 篇 estimation
  • 5 篇 computer vision
  • 5 篇 encoding
  • 5 篇 shape
  • 4 篇 image enhancemen...
  • 4 篇 object detection

机构

  • 25 篇 shenyang institu...
  • 24 篇 university of ch...
  • 23 篇 fujian key labor...
  • 20 篇 school of comput...
  • 18 篇 school of comput...
  • 16 篇 school of comput...
  • 14 篇 institutes for r...
  • 14 篇 jiangsu key labo...
  • 11 篇 college of compu...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 jiangsu key labo...
  • 8 篇 key laboratory o...
  • 8 篇 fujian key labor...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...

作者

  • 30 篇 yang jian
  • 22 篇 jiao licheng
  • 22 篇 gong maoguo
  • 20 篇 wang da-han
  • 20 篇 liu fang
  • 18 篇 gong chen
  • 15 篇 wu yue
  • 12 篇 li hao
  • 11 篇 licheng jiao
  • 10 篇 ma wenping
  • 9 篇 zhu shunzhi
  • 9 篇 jian yang
  • 8 篇 luo haibo
  • 8 篇 miao qiguang
  • 8 篇 haibo luo
  • 8 篇 wan sheng
  • 7 篇 da-han wang
  • 7 篇 hao hongxia
  • 6 篇 weng wei
  • 6 篇 shang fanhua

语言

  • 304 篇 英文
  • 11 篇 中文
  • 4 篇 其他
检索条件"机构=Key Laboratory of Image Understanding and Computer Vision"
318 条 记 录,以下是191-200 订阅
排序:
Edge-based matching pursuit for compressive image reconstruction
Edge-based matching pursuit for compressive image reconstruc...
收藏 引用
Congress on image and Signal Processing, CISP
作者: Jiao Wu Fang Liu Licheng Jiao Key Laboratory of Intelligent Perception Image Understanding of Ministry of Education of China Xian China College of Sciences China Jiliang University Hangzhou China School of Computer Science and Technology Xidian University Xian China
The prior information of image plays an important role in compressive sensing (CS) reconstruction. The edge is one of the important information which exists in the image to be recovered. In this work, the edge of imag... 详细信息
来源: 评论
Sequential 3D Human Pose and Shape Estimation From Point Clouds
Sequential 3D Human Pose and Shape Estimation From Point Clo...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Kangkan Wang Jin Xie Guofeng Zhang Lei Liu Jian Yang Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology China State Key Laboratory of CAD&CG Zhejiang University China ZJU-SenseTime Joint Lab of 3D Vision
This work addresses the problem of 3D human pose and shape estimation from a sequence of point clouds. Existing sequential 3D human shape estimation methods mainly focus on the template model fitting from a sequence o... 详细信息
来源: 评论
Aligning Multiple Knowledge Graphs in a Single Pass
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Yaming Wang, Zhe Guan, Ziyu Zhao, Wei Lu, Weigang Huang, Xinyan Cui, Jiangtao He, Xiaofei State Key Laboratory of Integrated Services Networks School of Computer Science and Technology Xidian University Xi’an China Key Laboratory of Intelligent Perception and Image UnDerstanding The Ministry of Education The School of Artificial Intelligence Xidian University Xi’an China State Key Laboratory of CAD&CG Zhejiang University Hangzhou China
Entity alignment (EA) is to identify equivalent entities across different knowledge graphs (KGs), which can help fuse these KGs into a more comprehensive one. Previous EA methods mainly focus on aligning a pair of KGs... 详细信息
来源: 评论
Maximizing Mutual Information Across Feature and Topology Views for Learning Graph Representations
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Xiaolong Gong, Maoguo Wu, Yue Li, Hao The School of Electronic Engineering Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education Xidian University Shaanxi Province Xi’an China The School of Computer Science and Technology Xidian University Shaanxi Province Xi’an China
Recently, maximizing mutual information has emerged as a powerful method for unsupervised graph representation learning. The existing methods are typically effective to capture graph information from the topology view... 详细信息
来源: 评论
LiDAR-SGMOS: Semantics-Guided Moving Object Segmentation with 3D LiDAR
LiDAR-SGMOS: Semantics-Guided Moving Object Segmentation wit...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Shuo Gu Suling Yao Jian Yang Chengzhong Xu Hui Kong PCA Laboratory Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China State Key Laboratory of Internet of Things for Smart City (SKL-IOTSC) University of Macau Macau China
Most of the existing moving object segmentation (MOS) methods regard MOS as an independent task, in this paper, we associate the MOS task with semantic segmentation, and propose a semantics-guided network for moving o...
来源: 评论
Live demonstration: Spatial-temporal color video reproduction from noisy CFA sequence track: Digital signal processing
Live demonstration: Spatial-temporal color video reproductio...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Lei Zhang Weisheng Dong Chiu-Wai Hui Xiaolin Wu Guangming Shi Department of computing Hong Kong Polytechnic University Hong Kong China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education Xidian University Xi'an China Department of Electrical and Computer Engineering McMaster University Canada
This demonstration shows a spatial-temporal denoising and demosaicking scheme for noisy CFA videos. This scheme can significantly reduce the noise-caused color artifacts and effectively preserve the image edge structu... 详细信息
来源: 评论
Polarimetric SAR image Classification Based on Deep Learning and Hierarchical Semantic Model
收藏 引用
Zidonghua Xuebao/Acta Automatica Sinica 2017年 第2期43卷 215-226页
作者: Shi, Jun-Fei Liu, Fang Lin, Yao-Hai Liu, Lu College of Computer Science and Technology Xidian University Xi'an710071 China School of Computer Science and Technology Xi'an University of Technology Xi'an710048 China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China Xidian University Xi'an710071 China School of Computer Science and Technology Fujian Agriculture and Forest University Fuzhou350002 China
Stacked auto-encoder model can effectively represent the complex terrain structures, such as the urban and the forest, by automatically learning high-level features. However, it has difficulty in preserving details an... 详细信息
来源: 评论
Multi-task learning for object keypoints detection and classification
收藏 引用
Pattern Recognition Letters 2020年 130卷 182-188页
作者: Jie Xu Lin Zhao Shanshan Zhang Chen Gong Jian Yang PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education and Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China State Key Laboratory of Integrated Services Networks Xidian Univeristy Xi’an 710071 China
Object keypoints detection and classification are both central research topics in computer vision . Due to their wide range potential applications in the real world, substantial efforts have been taken to advance thei...
来源: 评论
Optimization of Ultrasonic Imaging Using Persistence and Filter Technology
Optimization of Ultrasonic Imaging Using Persistence and Fil...
收藏 引用
2013 2nd International Conference on Materials Science and Technology(ICMST 2013)
作者: Dequan Guo Hongyu Yang Congyao Zhang Dong C.Liu Key Laboratory of Fundamental Synthetic Vision Graphics and Image Science for National Defense Sichuan University Department of Machinery Engineering Neijiang Vocational and Technical College College of Computer Science Sichuan University
B-mode ultrasonic images are often pervaded by the electronics noise and speckle artifact, which may make the interpretation of medical images difficult. In this paper, a legible method for ultrasonic image is constru... 详细信息
来源: 评论
Graph Convolutional Neural Network with Inter-layer Cascade Based on Attention Mechanism
Graph Convolutional Neural Network with Inter-layer Cascade ...
收藏 引用
IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)
作者: Lu Wei Yiting Liu Kaiyuan Feng Jianzhao Li Kai Sheng Yue Wu Key Laboratory of Big Data and Intelligent Vision School of Computer Science and Technology Xidian University Xi’an China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education School of Electronic Engineering Xidian University Xi’an China Academy of Advanced Interdisciplinary Research Xidian University Xi’an China Dongfeng USharing Technology Co. Ltd. Dongfeng Motor Corporation Wuhan China
In recent years, graph data in the non-Euclidean space has been widely used, and the methods and techniques for learning graph data in many deep learning fields have been continuously developed, such as the Graph neur... 详细信息
来源: 评论