咨询与建议

限定检索结果

文献类型

  • 565 篇 会议
  • 488 篇 期刊文献

馆藏范围

  • 1,053 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 414 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 147 篇 控制科学与工程
    • 127 篇 信息与通信工程
    • 112 篇 生物工程
    • 107 篇 生物医学工程(可授...
    • 102 篇 电气工程
    • 97 篇 光学工程
    • 85 篇 机械工程
    • 81 篇 电子科学与技术(可...
    • 40 篇 化学工程与技术
    • 37 篇 仪器科学与技术
    • 24 篇 动力工程及工程热...
    • 23 篇 航空宇航科学与技...
    • 22 篇 力学(可授工学、理...
    • 19 篇 材料科学与工程(可...
    • 17 篇 交通运输工程
    • 16 篇 船舶与海洋工程
  • 418 篇 理学
    • 226 篇 数学
    • 129 篇 生物学
    • 106 篇 物理学
    • 72 篇 统计学(可授理学、...
    • 58 篇 系统科学
    • 42 篇 化学
  • 149 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 69 篇 医学
    • 56 篇 临床医学
    • 54 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
  • 13 篇 经济学
  • 12 篇 法学
  • 12 篇 农学
  • 9 篇 教育学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 31 篇 feature extracti...
  • 24 篇 image segmentati...
  • 22 篇 semantics
  • 21 篇 deep learning
  • 21 篇 training
  • 20 篇 machine learning
  • 17 篇 object detection
  • 17 篇 convolution
  • 17 篇 image processing
  • 15 篇 image reconstruc...
  • 14 篇 electroencephalo...
  • 14 篇 pattern recognit...
  • 12 篇 reinforcement le...
  • 12 篇 simulation
  • 12 篇 neural networks
  • 12 篇 computational mo...
  • 12 篇 artificial intel...
  • 10 篇 deep neural netw...
  • 10 篇 laboratories
  • 10 篇 visualization

机构

  • 91 篇 school of artifi...
  • 68 篇 key laboratory o...
  • 41 篇 key laboratory o...
  • 33 篇 shenzhen huazhon...
  • 26 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 24 篇 alibaba group
  • 22 篇 key laboratory o...
  • 21 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 school of comput...
  • 19 篇 key laboratory o...
  • 18 篇 anhui province k...
  • 17 篇 national key lab...
  • 15 篇 beijing aerospac...
  • 13 篇 school of artifi...
  • 13 篇 huazhong univers...
  • 13 篇 school of three ...
  • 12 篇 fujian provincia...
  • 12 篇 key laboratory o...

作者

  • 60 篇 wu dongrui
  • 55 篇 sang nong
  • 47 篇 gao changxin
  • 28 篇 cao zhiguo
  • 27 篇 ding mingyue
  • 26 篇 zeng zhigang
  • 24 篇 wang xiang
  • 23 篇 hai-tao zhang
  • 22 篇 zhang shiwei
  • 20 篇 zhigang zeng
  • 19 篇 huang jian
  • 18 篇 liu jian
  • 17 篇 qing zhiwu
  • 17 篇 jian huang
  • 17 篇 mingyue ding
  • 16 篇 xi li
  • 16 篇 pan linqiang
  • 15 篇 wang xiaoping
  • 15 篇 jian liu
  • 14 篇 zhiguo cao

语言

  • 959 篇 英文
  • 72 篇 其他
  • 22 篇 中文
检索条件"机构=Key Laboratory of Imaging Processing and Intelligence Control"
1053 条 记 录,以下是721-730 订阅
排序:
城市耦合风险——以人为本的复杂系统视角(英文)
收藏 引用
Engineering 2025年 第1期 44-50页
作者: 欧阳敏 程泽楷 马佳欣 王红卫 Stergios Aristoteles Mitoulis School of Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of Image Processing and Intelligent Control Ministry of Education Huazhong University of Science and Technology School of Management Huazhong University of Science and Technology School of Engineering University of Birmingham
The complexity of coupled risks, which refer to the compounded effects of interacting uncertainties across multiple interdependent objectives, is inherent to cities functioning as dynamic, interdependent systems. A di...
来源: 评论
Gram Matrix Based Transistor Open-Circuit Fault Diagnosis Method for Voltage-Source Inverter Fed Vector controlled Induction Motor Drives
Gram Matrix Based Transistor Open-Circuit Fault Diagnosis Me...
收藏 引用
International Conference on Power Electronics and Motion control (IPEMC)
作者: Yang Zhou Feng Wu Jin Zhao School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Key Laboratory of Imaging Processing and Intelligence Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China School of Computer Science and Engineering Nanyang Technological University
This paper proposed a novel, real-time and high efficiency diagnostic method for Insulated Gate Bipolar Transistor(IGBT) open-circuit fault in pulse-width-modulated (PWM) voltage- source inverter fed vector-controlled... 详细信息
来源: 评论
A Model Reference Adaptive controller with Feedforward Decoupling for Active Magnetic Bearing Rotor System  4
A Model Reference Adaptive Controller with Feedforward Decou...
收藏 引用
4th IEEE Advanced Information Technology, Electronic and Automation control Conference, IAEAC 2019
作者: Yi, Jian Ren, Gui-Ping Zhang, Hai-Tao Wu, Yue Huazhong University of Science and Technology School of Artificial Intelligence and Automation Key Laboratory of Image Processing and Intelligent Control Wuhan430074 China
Active magnetic bearing (AMB) rotor system is widely applied in the industry for its remarkable advantages. However, it is a typical open-loop unstable mechatronics system suffering from nonlinear and couple character... 详细信息
来源: 评论
Probabilistic Charging Power Forecast of EVCS: Reinforcement Learning Assisted Deep Learning Approach
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yuanzheng He, Shangyang Li, Yang Ge, Leijiao Lou, Suhua Zeng, Zhigang School of Artificial Intelligence and Automation Key Laboratory on Image Information Processing and Intelligent Control of Ministry of Education Huazhong University of Science and Technology Wuhan430074 China China-Belt and Road Joint Laboratory on Measurement and Control Technology Wuhan430074 China China-EU Institute for Clean and Renewable Energy Huazhong University of Science and Technology Wuhan430074 China School of Electrical Engineering Northeast Electric Power University Jilin 132012 China The Key Laboratory of Smart Grid of Ministry of Education Tianjin University Tianjin 300072 China School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan430074 China
The electric vehicle (EV) and electric vehicle charging station (EVCS) have been widely deployed with the development of large-scale transportation electrifications. However, since charging behaviors of EVs show large... 详细信息
来源: 评论
Efficient 3D Deep LiDAR Odometry
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Guangming Wu, Xinrui Jiang, Shuyang Liu, Zhe Wang, Hesheng Department of Automation Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai200240 China Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China The Key Laboratory of Artificial Intelligence of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China
An efficient 3D point cloud learning architecture, named EfficientLO-Net, for LiDAR odometry is first proposed in this paper. In this architecture, the projection-aware representation of the 3D point cloud is proposed... 详细信息
来源: 评论
A self-supervised learning-based 6-DOF grasp planning method for manipulator
arXiv
收藏 引用
arXiv 2021年
作者: Peng, Gang Ren, Zhenyu Wang, Hao Li, Xinde School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Key Laboratory of Image Processing and Intelligent Control Ministry of Education Wuhan430074 China IEEE senior member School of Automation South East University Nanjing China
To realize a robust robotic grasping system for unknown objects in an unstructured environment, large amounts of grasp data and 3D model data for the object are required, the sizes of which directly affect the rate of... 详细信息
来源: 评论
A Robust Matching Method for Optical and SAR Images Based on Coarse-to-Fine Mechanism
A Robust Matching Method for Optical and SAR Images Based on...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Cong Li Shuxuan Chen Kun Sun Yi Liang National Laboratory of Radar Signal Processing Xidian University Xi'an China National Key Laboratory of Science and Technology on Aerospace Intelligence Control Beijing Aerospace Automatic Control Institute Beijing China
Although image matching techniques have been developed in the last decades, automatic optical-synthetic aperture radar (SAR) image matching is still a challenging task due to significant nonlinear intensity difference... 详细信息
来源: 评论
CMCRD: Cross-Modal Contrastive Representation Distillation for Emotion Recognition
arXiv
收藏 引用
arXiv 2025年
作者: Kan, Siyuan Wu, Huanyu Cui, Zhenyao Huang, Fan Xu, Xiaolong Wu, Dongrui Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Wuhan Institute of Digital Engineering Wuhan430074 China Shanghai Jiao Tong University Shanghai200240 China
Emotion recognition is an important component of affective computing, and also human-machine interaction. Unimodal emotion recognition is convenient, but the accuracy may not be high enough;on the contrary, multi-moda... 详细信息
来源: 评论
Reliability on Deep Learning Models: A Comprehensive Observation
Reliability on Deep Learning Models: A Comprehensive Observa...
收藏 引用
International Symposium on System and Software Reliability (ISSSR)
作者: Yuhong Zhang Chunjing Xiao School of Artificial Intelligence and Big Data Key Laboratory of Grain Information Processing and Control Ministry of Education Henan University of Technology Zhengzhou China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China
This paper provides a comprehensive observation to examine the reliability of deep learning (DL) models. First, we will briefly introduce the essential background and kernel techniques in deep learning, such as downsa... 详细信息
来源: 评论
Distributed second order sliding mode secondary frequency control for HVDC system
Distributed second order sliding mode secondary frequency co...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yang-Ming Dou Ming Chi Zhi-Wei Liu Key Laboratory of Image Processing and Intelligent Control Ministry of Education College of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
This paper studies the secondary frequency control among non-synchronous AC areas interconnected by High Voltage Direct Current (HVDC). A distributed second order sliding mode control scheme is adopted to secondary fr... 详细信息
来源: 评论