Shaoqing Wang1, Xiancun Yang2, Meixia Su1, Qiang Liu1 1Department of MRI, Shandong Medical imaging Research Institute Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of C...
详细信息
Shaoqing Wang1, Xiancun Yang2, Meixia Su1, Qiang Liu1 1Department of MRI, Shandong Medical imaging Research Institute Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China; 2Department of Interventional Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China Correspondence: Qiang Liu (2002md@***) Aims To evaluate the diagnostic value of three- dimensional rotational angiography (3D-RA) of intracranial micro-aneurysms (diameter ≤ 3 mm) and provide guidance on the value of endovascular treatment. Materials and methods 43 patients with intracranial micro-aneurysms were analyzed retrospectively, all patients had undergone angiography with both conventional 2D-DSA(Two-Dimensional Digital Subtraction Angiography) and rotational angiography with three-dimensional reconstruction; the frequency of detection of aneurysms, depiction of aneurysm neck, radiation dose, and the dosage of contrast agent were recorded respectively. Results 55 pieces of aneurysms were detected out from the 43 cases with intracranial micro-aneurysms by 3D-RA. But only 39 cases were detected out using 2D-DSA from the 55 samples, there were significant differences with regards to detection rate (P < 0.05). There were significant differences in radiation dose and dosage of contrast agent (P < 0.05) between the two methods of using 3D-RA can improve the detection rate of micro-aneurysms, which bestows obvious advantages on displaying the shape of aneurysms, the aneurysm neck at the best angle, and the relationship with the parent artery, at the same time, the amount of contrast agent and radiation dose are reduced in 3D-RA compared to 2D-DSA.
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral informat...
详细信息
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects " and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.
暂无评论