咨询与建议

限定检索结果

文献类型

  • 743 篇 会议
  • 559 篇 期刊文献

馆藏范围

  • 1,302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 828 篇 工学
    • 450 篇 计算机科学与技术...
    • 400 篇 软件工程
    • 273 篇 控制科学与工程
    • 142 篇 电气工程
    • 111 篇 信息与通信工程
    • 110 篇 机械工程
    • 105 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 88 篇 电子科学与技术(可...
    • 86 篇 光学工程
    • 48 篇 化学工程与技术
    • 40 篇 仪器科学与技术
    • 36 篇 动力工程及工程热...
    • 34 篇 交通运输工程
    • 24 篇 力学(可授工学、理...
    • 22 篇 航空宇航科学与技...
    • 17 篇 材料科学与工程(可...
  • 515 篇 理学
    • 294 篇 数学
    • 119 篇 物理学
    • 113 篇 生物学
    • 109 篇 系统科学
    • 71 篇 统计学(可授理学、...
    • 46 篇 化学
  • 185 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 49 篇 图书情报与档案管...
    • 42 篇 工商管理
  • 63 篇 医学
    • 56 篇 临床医学
    • 37 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
  • 20 篇 法学
    • 18 篇 社会学
  • 15 篇 经济学
  • 10 篇 农学
  • 8 篇 教育学
  • 5 篇 军事学
  • 4 篇 文学
  • 1 篇 艺术学

主题

  • 39 篇 feature extracti...
  • 31 篇 training
  • 24 篇 multi-agent syst...
  • 19 篇 object detection
  • 19 篇 simulation
  • 19 篇 computational mo...
  • 19 篇 multi agent syst...
  • 18 篇 electroencephalo...
  • 18 篇 stability analys...
  • 18 篇 accuracy
  • 17 篇 semantics
  • 16 篇 neural networks
  • 16 篇 real-time system...
  • 15 篇 deep learning
  • 15 篇 optimization
  • 14 篇 image segmentati...
  • 14 篇 predictive model...
  • 14 篇 machine learning
  • 14 篇 robustness
  • 13 篇 reinforcement le...

机构

  • 111 篇 shanghai enginee...
  • 109 篇 department of au...
  • 101 篇 key laboratory o...
  • 78 篇 school of artifi...
  • 55 篇 school of automa...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 27 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 22 篇 key laboratory o...
  • 21 篇 department of au...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 department of co...
  • 16 篇 ministry of educ...
  • 15 篇 shanghai jiao to...
  • 15 篇 college of compu...
  • 15 篇 shanghai jiao to...

作者

  • 62 篇 wu dongrui
  • 47 篇 zeng zhigang
  • 46 篇 zhigang zeng
  • 32 篇 cao zhiguo
  • 30 篇 wang hesheng
  • 29 篇 guan xinping
  • 28 篇 chen cailian
  • 25 篇 housheng su
  • 24 篇 xi li
  • 22 篇 ding mingyue
  • 22 篇 sang nong
  • 22 篇 su housheng
  • 21 篇 wang guangming
  • 21 篇 jian huang
  • 19 篇 li xi
  • 19 篇 hesheng wang
  • 19 篇 huang jian
  • 18 篇 yongji wang
  • 18 篇 shanying zhu
  • 18 篇 li wei

语言

  • 1,239 篇 英文
  • 43 篇 其他
  • 21 篇 中文
检索条件"机构=Key Laboratory of Imaging Processing and Intelligent Control of Ministry of Education"
1302 条 记 录,以下是11-20 订阅
排序:
Cross-user Gesture Recognition Based on Deep Domain Adaptation Networks  43
Cross-user Gesture Recognition Based on Deep Domain Adaptati...
收藏 引用
43rd Chinese control Conference, CCC 2024
作者: Fu, Zhongzheng He, Xinrun Wang, Haoyuan Chen, Xingjian Li, Yixuan Huang, Jian Huazhong University of Science and Technology Ministry of Education Key Laboratory of Image Processing and Intelligent Control Hubei Key Laboratory of Brain-inspired Intelligent Systems School of Artificial Intelligence and Automation Wuhan430074 China
This study introduces an innovative approach for gesture recognition in smart wearable devices using a deep domain adaptation model, focusing on the challenges posed by heterogeneous user environments and the need for... 详细信息
来源: 评论
Knowledge-Data Fusion Based Source-Free Semi-Supervised Domain Adaptation for Seizure Subtype Classification
Knowledge-Data Fusion Based Source-Free Semi-Supervised Doma...
收藏 引用
2024 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2024
作者: Peng, Ruimin An, Jiayu Wu, Dongrui School of Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control Wuhan430074 China
Electroencephalogram (EEG)-based seizure sub-type classification enhances clinical diagnosis efficiency. Source-free semi-supervised domain adaptation (SF-SSDA), which transfers a pre-trained model to a new dataset wi... 详细信息
来源: 评论
Bagging and Boosting Fine-Tuning for Ensemble Learning
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第4期5卷 1728-1742页
作者: Zhao, Changming Peng, Ruimin Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and TechnologyWuhan 430074 China and alsowith the ShenzhenHuazhong University of Science and Technology Research Institute Shenzhen 518029 China
Ensemble learning aggregates outputs from multiple base learners for better performance. Bootstrap aggregating (bagging) and boosting are two popular such approaches. They are suitable for integrating unstable base le... 详细信息
来源: 评论
Extended State Observer-based Hybrid Dynamic Event-Triggered Consensus control with External Disturbances  24
Extended State Observer-based Hybrid Dynamic Event-Triggered...
收藏 引用
2nd International Conference on Frontiers of intelligent Manufacturing and Automation, CFIMA 2024
作者: Pei, Wenliang Hua, Changchun Cui, Hailong Zhao, Guanglei Ma, Zhuang The Institute of Electrical Engineering The Key Lab of Intelligent Rehabilitation and Neuroregulation in Hebei Province Key Laboratory of Intelligent Control and Neural Information Processing Ministry of Education Yanshan University Hebei China Tangshan University Hebei China
This paper solves the event-triggered robust consensus problem of disturbed multi-agent systems (MASs) in fully distributed fashion. First, a distributed extended state observer (DESO) is developed for appropriately e... 详细信息
来源: 评论
Semisupervised Transfer Boosting (SS-TrBoosting)
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第7期5卷 3431-3444页
作者: Deng, Lingfei Zhao, Changming Du, Zhenbang Xia, Kun Wu, Dongrui Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan 430074 China and also with Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518063 China
Semisupervised domain adaptation (SSDA) aims at training a high-performance model for a target domain using few labeled target data, many unlabeled target data, and plenty of auxiliary data from a source domain. Previ... 详细信息
来源: 评论
Prescribed-Time Stabilization of Singularly Perturbed Systems
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第2期10卷 569-571页
作者: Yan Lei Yan-Wu Wang Xiao-Kang Liu Wu Yang the School of Artificial Intelligence and Automation Huazhong University of Science and Technology(HUST)Wuhan 430074 Key Laboratory of Image Processing and Intelligent Control Ministry of EducationWuhan 430074China the School of Electrical Engineering Guangxi UniversityNanning 530004China
Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design ... 详细信息
来源: 评论
Multi-Human Pose Estimation by Deep Learning-Based Sequential Approach for Human keypoint Position and Human Body Detection
收藏 引用
Journal of Shanghai Jiaotong University (Science) 2023年 1-11页
作者: Tahir, Rizwan Cai, Yunze Department of Automation Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China
Recent multimedia and computer vision research has focused on analyzing human behavior and activity using images. Skeleton estimation, known as pose estimation, has received a significant attention. For human pose est... 详细信息
来源: 评论
Grain condition inspection: one improved grey wolf algorithm for nodes deployment optimization combining with path planning of multi-inspection robots
收藏 引用
Soft Computing 2024年 第20期28卷 11971-11986页
作者: Zhu, Chunhua Zhang, Jilong Yang, Jing Key Laboratory of Grain Information Processing and Control Ministry of Education Henan University of Technology Henan Zhengzhou450001 China Henan Key Laboratory of Grain Photoelectric Detection and Control Henan University of Technology Henan Zhengzhou450001 China Henan Engineering Laboratory of Grain Condition Intelligent Detection and Application Henan University of Technology Henan Zhengzhou450001 China
Grain inspection robots can detect abnormal information such as grain insects and impurities on the grain surface by deploying detection nodes, it has a significant for the safety of grain storage. Generally, the grey... 详细信息
来源: 评论
HTRNN: A New Protein Nuclear Localization Prediction Tool  7
HTRNN: A New Protein Nuclear Localization Prediction Tool
收藏 引用
7th IEEE Advanced Information Technology, Electronic and Automation control Conference, IAEAC 2024
作者: Miao, Xinyu Li, Wei Huazhong University of Science and Technology School of Artificial Intelligence and Automation Wuhan China Image Processing and Intelligent Control Key Laboratory of the Education Ministry of China Wuhan China
Current protein nuclear localization assays encounter multiple challenges that underscore the constraints of conventional biochemical assays and sequence-based procedures. This paper highlights the emerging interest i... 详细信息
来源: 评论
An Optimal control-Based Distributed Reinforcement Learning Framework for A Class of Non-Convex Objective Functionals of the Multi-Agent Network
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第11期10卷 2081-2093页
作者: Zhe Chen Ning Li Department of Automation Shanghai Jiao Tong UniversityShanghai 200240 Key Laboratory of System Control and Information Processing Ministry of Education of ChinaShanghai 200240 Shanghai Engineering Research Center of Intelligent Control and Management Shanghai 200240China Department of Automation Tsinghua UniversityBeijing 100084China IEEE
This paper studies a novel distributed optimization problem that aims to minimize the sum of the non-convex objective functionals of the multi-agent network under privacy protection, which means that the local objecti... 详细信息
来源: 评论