咨询与建议

限定检索结果

文献类型

  • 34 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 16 篇 计算机科学与技术...
    • 14 篇 软件工程
    • 5 篇 机械工程
    • 3 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 生物工程
    • 1 篇 光学工程
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 生物医学工程(可授...
  • 8 篇 理学
    • 4 篇 数学
    • 4 篇 生物学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 10 篇 visualization
  • 9 篇 semantics
  • 8 篇 feature extracti...
  • 6 篇 image color anal...
  • 5 篇 training
  • 4 篇 image segmentati...
  • 4 篇 image retrieval
  • 4 篇 humans
  • 3 篇 support vector m...
  • 3 篇 image edge detec...
  • 3 篇 data mining
  • 3 篇 clustering algor...
  • 2 篇 conferences
  • 2 篇 indexing
  • 2 篇 task analysis
  • 2 篇 dictionaries
  • 2 篇 videos
  • 2 篇 vectors
  • 2 篇 optimization
  • 2 篇 graph neural net...

机构

  • 18 篇 key lab of intel...
  • 17 篇 university of ch...
  • 12 篇 peng cheng labor...
  • 7 篇 university of sc...
  • 7 篇 chinese academy ...
  • 5 篇 chinese academy ...
  • 5 篇 key lab. of inte...
  • 4 篇 key lab of intel...
  • 4 篇 key laboratory o...
  • 4 篇 harbin institute...
  • 3 篇 australian insti...
  • 3 篇 college of compu...
  • 3 篇 key laboratory o...
  • 3 篇 university of ch...
  • 3 篇 school of comput...
  • 2 篇 harbin institute...
  • 2 篇 university of th...
  • 2 篇 key laboratory o...
  • 2 篇 megvii inc
  • 2 篇 institute of mic...

作者

  • 21 篇 huang qingming
  • 17 篇 qingming huang
  • 9 篇 shuqiang jiang
  • 8 篇 li liang
  • 7 篇 zhang weigang
  • 6 篇 zha zheng-jun
  • 5 篇 jiang shuqiang
  • 5 篇 wang shuhui
  • 4 篇 liang li
  • 4 篇 li guorong
  • 4 篇 weiqiang wang
  • 4 篇 lei qin
  • 4 篇 wen gao
  • 3 篇 qi yuankai
  • 3 篇 chunxi liu
  • 3 篇 yang shijie
  • 3 篇 qin lei
  • 3 篇 liu xinyan
  • 3 篇 zhang yanhao
  • 3 篇 li su

语言

  • 45 篇 英文
  • 2 篇 其他
检索条件"机构=Key Laboratory of Intell. Information Process. Institute of Comput. Technology"
47 条 记 录,以下是1-10 订阅
排序:
Bias-Conflict Sample Synthesis and Adversarial Removal Debias Strategy for Temporal Sentence Grounding in Video
arXiv
收藏 引用
arXiv 2024年
作者: Qi, Zhaobo Yuan, Yibo Ruan, Xiaowen Wang, Shuhui Zhang, Weigang Huang, Qingming Harbin Institute of Technology Weihai China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China
Temporal Sentence Grounding in Video (TSGV) is troubled by dataset bias issue, which is caused by the uneven temporal distribution of the target moments for samples with similar semantic components in input videos or ... 详细信息
来源: 评论
Dis2Booth: Learning Image Distribution with Disentangled Features for Text-to-Image Diffusion Models  39
Dis<sup>2</sup>Booth: Learning Image Distribution with Disen...
收藏 引用
39th Annual AAAI Conference on Artificial intell.gence, AAAI 2025
作者: Ding, Guanqi Yang, Chengyu Wang, Shuhui Li, Xincheng Zhang, Jinzhe Jin, Xin Huang, Qingming University of Chinese Academy of Sciences Beijing China Beijing Institute of Technology Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China Huawei Cloud EI Innovation Lab China Peng Cheng Laboratory Shenzhen China
Personalized image generation enables customized content creation based on the text-to-image diffusion models. However, existing personalization methods focus on fine-tuning generative models to generate a specific in... 详细信息
来源: 评论
Context-aware Difference Distilling for Multi-change Captioning
arXiv
收藏 引用
arXiv 2024年
作者: Tu, Yunbin Li, Liang Su, Li Zha, Zheng-Jun Yan, Chenggang Huang, Qingming University of Chinese Academy of Sciences Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Science and Technology of China Hefei China Hangzhou Dianzi University Hangzhou China Lishui Institute of Hangzhou Dianzi University Lishui China
Multi-change captioning aims to describe complex and coupled changes within an image pair in natural language. Compared with single-change captioning, this task requires the model to have higher-level cognition abilit... 详细信息
来源: 评论
Weakly Supervised Video Individual Counting
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Xinyan Li, Guorong Qi, Yuankai Yan, Ziheng Han, Zhenjun van den Hengel, Anton Yang, Ming-Hsuan Huang, Qingming University of Chinese Academy of Science Beijing China Australian Institute for Machine Learning The University of Adelaide Australia Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China Peng Cheng Laboratory Shenzhen China University of California Merced United States
Video Individual Counting (VIC) aims to predict the number of unique individuals in a single video. Existing methods learn representations based on trajectory labels for individuals, which are annotation-expensive. To... 详细信息
来源: 评论
Automatic Relation-aware Graph Network Proliferation
arXiv
收藏 引用
arXiv 2022年
作者: Cai, Shaofei Li, Liang Han, Xinzhe Luo, Jiebo Zha, Zheng-Jun Huang, Qingming Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China University of Rochester United States University of Science and Technology of China China Peng Cheng Laboratory Shenzhen China
Graph neural architecture search has sparked much attention as Graph Neural Networks (GNNs) have shown powerful reasoning capability in many relational tasks. However, the currently used graph search space overemphasi... 详细信息
来源: 评论
Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment
arXiv
收藏 引用
arXiv 2022年
作者: Xiao, Jiayu Li, Liang Wang, Chaofei Zha, Zheng-Jun Huang, Qingming Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China Department of Automation Tsinghua University China University of Science and Technology of China China Peng Cheng Laboratory Shenzhen China
Training a generative adversarial network (GAN) with limited data has been a challenging task. A feasible solution is to start with a GAN well-trained on a large scale source domain and adapt it to the target domain w... 详细信息
来源: 评论
R3Net:Relation-embedded representation reconstruction network for change captioning
arXiv
收藏 引用
arXiv 2021年
作者: Tu, Yunbin Li, Liang Yan, Chenggang Gao, Shengxiang Yu, Zhengtao Yunnan Key Laboratory of Artificial Intelligence Kunming University of Science and Technology Key Lab of Intell. Info. Process. Inst. of Comput. Tech. Chinese Academy of Sciences Intelligent Information Processing Laboratory Hangzhou Dianzi University
Change captioning is to use a natural language sentence to describe the fine-grained disagreement between two similar images. Viewpoint change is the most typical distractor in this task, because it changes the scale ... 详细信息
来源: 评论
Progressive Multi-resolution Loss for Crowd Counting
arXiv
收藏 引用
arXiv 2022年
作者: Yan, Ziheng Qi, Yuankai Li, Guorong Liu, Xinyan Zhang, Weigang Huang, Qingming Yang, Ming-Hsuan University of Chinese Academy of Science Beijing China Australian Institute for Machine Learning The University of Adelaide Australia Harbin Institute of Technology Weihai China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China Peng Cheng Laboratory Shenzhen China University of California MercedCA United States
Crowd counting is usually handled in a density map regression fashion, which is supervised via a L2 loss between the predicted density map and ground truth. To effectively regulate models, various improved L2 loss fun...
来源: 评论
Consistency-Aware Anchor Pyramid Network for Crowd Localization
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xinyan Li, Guorong Qi, Yuankai Han, Zhenjun Huang, Qingming Yang, Ming-Hsuan Sebe, Nicu University of Chinese Academy of Science Beijing China Australian Institute for Machine Learning The University of Adelaide Australia Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China Peng Cheng Laboratory Shenzhen China University of California Merced United States University of Trento Italy
Crowd localization aims to predict the spatial position of humans in a crowd scenario. We observe that the performance of existing methods is challenged from two aspects: (i) ranking inconsistency between test and tra...
来源: 评论
Edge-featured graph neural architecture search
arXiv
收藏 引用
arXiv 2021年
作者: Cai, Shaofei Li, Liang Han, Xinzhe Zha, Zheng-Jun Huang, Qingming Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China University of Science and Technology of China China Peng Cheng Laboratory Shenzhen China
Graph neural networks (GNNs) have been successfully applied to learning representation on graphs in many relational tasks. Recently, researchers study neural architecture search (NAS) to reduce the dependence of human... 详细信息
来源: 评论