咨询与建议

限定检索结果

文献类型

  • 551 篇 期刊文献
  • 496 篇 会议

馆藏范围

  • 1,047 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 445 篇 计算机科学与技术...
    • 398 篇 软件工程
    • 149 篇 生物医学工程(可授...
    • 137 篇 生物工程
    • 119 篇 光学工程
    • 111 篇 信息与通信工程
    • 105 篇 电气工程
    • 103 篇 控制科学与工程
    • 75 篇 电子科学与技术(可...
    • 71 篇 机械工程
    • 35 篇 化学工程与技术
    • 30 篇 仪器科学与技术
    • 20 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 18 篇 交通运输工程
    • 17 篇 力学(可授工学、理...
  • 419 篇 理学
    • 221 篇 数学
    • 147 篇 生物学
    • 121 篇 物理学
    • 74 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 39 篇 化学
  • 155 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 102 篇 医学
    • 92 篇 临床医学
    • 76 篇 基础医学(可授医学...
    • 56 篇 药学(可授医学、理...
    • 21 篇 公共卫生与预防医...
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 14 篇 农学
  • 12 篇 法学
  • 9 篇 教育学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 27 篇 feature extracti...
  • 25 篇 image segmentati...
  • 25 篇 semantics
  • 25 篇 machine learning
  • 24 篇 deep learning
  • 23 篇 training
  • 18 篇 image reconstruc...
  • 17 篇 image processing
  • 16 篇 semantic segment...
  • 16 篇 convolution
  • 15 篇 pattern recognit...
  • 14 篇 transformers
  • 12 篇 object detection
  • 12 篇 magnetic resonan...
  • 12 篇 neural networks
  • 11 篇 electroencephalo...
  • 11 篇 computational mo...
  • 11 篇 image coding
  • 11 篇 visualization
  • 11 篇 artificial intel...

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 50 篇 guangdong key la...
  • 45 篇 guangdong provin...
  • 41 篇 key laboratory o...
  • 33 篇 school of artifi...
  • 32 篇 shenzhen huazhon...
  • 31 篇 school of comput...
  • 26 篇 key laboratory o...
  • 25 篇 alibaba group
  • 24 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 16 篇 university of ch...
  • 13 篇 school of artifi...
  • 12 篇 huazhong univers...
  • 12 篇 peng cheng labor...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...

作者

  • 60 篇 wu dongrui
  • 55 篇 sang nong
  • 45 篇 gao changxin
  • 28 篇 cao zhiguo
  • 27 篇 liu zaiyi
  • 26 篇 zeng zhigang
  • 24 篇 wang xiang
  • 23 篇 hai-tao zhang
  • 23 篇 ding mingyue
  • 22 篇 zhang shiwei
  • 22 篇 shi zhenwei
  • 19 篇 yin jian
  • 19 篇 zhigang zeng
  • 18 篇 huang jian
  • 17 篇 qing zhiwu
  • 17 篇 liu jian
  • 17 篇 yu jianxing
  • 17 篇 jian huang
  • 16 篇 pan linqiang
  • 16 篇 zaiyi liu

语言

  • 952 篇 英文
  • 73 篇 其他
  • 21 篇 中文
检索条件"机构=Key Laboratory of Intelligence Image Processing and Analysis"
1047 条 记 录,以下是671-680 订阅
排序:
Empirical studies on the properties of linear regions in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Xiao Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
A deep neural network (DNN) with piecewise linear activations can partition the input space into numerous small linear regions, where different linear functions are fitted. It is believed that the number of these regi... 详细信息
来源: 评论
A Multi-scale Network for Semantic Segmentation of 3D Point Clouds
A Multi-scale Network for Semantic Segmentation of 3D Point ...
收藏 引用
Chinese Automation Congress (CAC)
作者: Ying He Li Xiao Yong Jiang Zhigang Sun Zhuo Wang Gang Peng Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
Semantic segmentation is a fundamental operation in scene analysis. In this paper, an effective multiscale network for 3D point cloud semantic segmentation was introduced. By using a multiscale local feature extractio... 详细信息
来源: 评论
A memristor-based generalization and differentiation circuit design and the application in recognition
A memristor-based generalization and differentiation circuit...
收藏 引用
第三十九届中国控制会议
作者: Meijia Shang Xiaoping Wang Mian Li the School of Artificial Intelligence and Automation Huazhong University of Science and Technology IEEE the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China
The traditional Pavlov associative memory circuit realizes the law of learning and forgetting in classical conditioned reflex. In addition, the law of generalization and differentiation also belongs to classical condi... 详细信息
来源: 评论
Graph-based scale-aware network for human parsing  1
收藏 引用
2nd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2019
作者: Yang, Beibei Yu, Changqian Liu, Jiahui Gao, Changxin Sang, Nong Key Laboratory of Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
Recent work has made considerable progress in exploring contextual information for human parsing with the Fully Convolutional Network framework. However, there still exist two challenges: (1) inherent relative relatio... 详细信息
来源: 评论
Integrating Informativeness, Representativeness and Diversity in Pool-Based Sequential Active Learning for Regression
Integrating Informativeness, Representativeness and Diversit...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ziang Liu Dongrui Wu Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
In many real-world machine learning applications, unlabeled samples are easy to obtain, but it is expensive and/or time-consuming to label them. Active learning is a common approach for reducing this data labeling eff... 详细信息
来源: 评论
Towards explainable multi-party learning: A contrastive knowledge sharing framework
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Yuan Li, Jiawei Gong, Maoguo Xie, Yu Qin, A.K. The School of Electronic Engineering Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education Xidian University Shaanxi Province Xi'an710071 China The Key Laboratory of Computational Intelligence Chinese Information Processing Ministry of Education Shanxi University Taiyuan030006 China The department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia
Multi-party learning provides solutions for training joint models with decentralized data under legal and practical constraints. However, traditional multi-party learning approaches are confronted with obstacles such ... 详细信息
来源: 评论
REST: Relational event-driven stock trend forecasting
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Wentao Liu, Weiqing Xu, Chang Bian, Jiang Yin, Jian Liu, Tie-Yan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China School of Artificial Intelligence Sun Yat-sen University Zhuhai China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
Stock trend forecasting, aiming at predicting the stock future trends, is crucial for investors to seek maximized profits from the stock market. Many event-driven methods utilized the events extracted from news, socia... 详细信息
来源: 评论
Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Lei Zhang, Yuzhong Zhang, Jiadong Qian, Xuejun Gong, Chen Sun, Kun Ding, Zhongxiang Wang, Xing Li, Zhenhui Liu, Zaiyi Shen, Dinggang The School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China The School of Biomedical Engineering ShanghaiTech University China The School of Computer Science and Engineering Nanjing University of Science and Technology China Ruijin Hospital Shanghai Jiaotong University School of Medicine China Department of Radiology Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province China The Shanghai General Hospital Shanghai JiaoTong University China Department of Radiology The Third Affiliated Hospital of Kunming Medical University China Department of Radiology Guangdong Provincial Peo-ple's Hospital Guangdong Academy of Medical Sciences Guangzhou510080 China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou510080 China School of Biomedical Engineering State Key Laboratory of Advanced Medical Materials and Devices ShanghaiTech University Shanghai201210 China Shanghai United Imaging Intelligence Co. Ltd. Shanghai200232 China Shanghai Clinical Research and Trial Center Shanghai201210 China
Automated breast tumor segmentation on the basis of dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) has shown great promise in clinical practice, particularly for identifying the presence of breast d... 详细信息
来源: 评论
KGE-CL: Contrastive Learning of Tensor Decomposition Based Knowledge Graph Embeddings
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Zhiping Xu, Wentao Liu, Weiqing Bian, Jiang Yin, Jian Liu, Tie-Yan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China School of Artificial Intelligence Sun Yat-sen University Zhuhai China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
Learning the embeddings of knowledge graphs (KG) is vital in artificial intelligence, and can benefit various downstream applications, such as recommendation and question answering. In recent years, many research effo... 详细信息
来源: 评论
Reliability on Deep Learning Models: A Comprehensive Observation
Reliability on Deep Learning Models: A Comprehensive Observa...
收藏 引用
International Symposium on System and Software Reliability (ISSSR)
作者: Yuhong Zhang Chunjing Xiao School of Artificial Intelligence and Big Data Key Laboratory of Grain Information Processing and Control Ministry of Education Henan University of Technology Zhengzhou China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China
This paper provides a comprehensive observation to examine the reliability of deep learning (DL) models. First, we will briefly introduce the essential background and kernel techniques in deep learning, such as downsa... 详细信息
来源: 评论