咨询与建议

限定检索结果

文献类型

  • 551 篇 期刊文献
  • 496 篇 会议

馆藏范围

  • 1,047 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 704 篇 工学
    • 445 篇 计算机科学与技术...
    • 398 篇 软件工程
    • 149 篇 生物医学工程(可授...
    • 137 篇 生物工程
    • 119 篇 光学工程
    • 111 篇 信息与通信工程
    • 105 篇 电气工程
    • 103 篇 控制科学与工程
    • 75 篇 电子科学与技术(可...
    • 71 篇 机械工程
    • 35 篇 化学工程与技术
    • 30 篇 仪器科学与技术
    • 20 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 18 篇 交通运输工程
    • 17 篇 力学(可授工学、理...
  • 419 篇 理学
    • 221 篇 数学
    • 147 篇 生物学
    • 121 篇 物理学
    • 74 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 39 篇 化学
  • 155 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 102 篇 医学
    • 92 篇 临床医学
    • 76 篇 基础医学(可授医学...
    • 56 篇 药学(可授医学、理...
    • 21 篇 公共卫生与预防医...
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 14 篇 农学
  • 12 篇 法学
  • 9 篇 教育学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 27 篇 feature extracti...
  • 25 篇 image segmentati...
  • 25 篇 semantics
  • 25 篇 machine learning
  • 24 篇 deep learning
  • 23 篇 training
  • 18 篇 image reconstruc...
  • 17 篇 image processing
  • 16 篇 semantic segment...
  • 16 篇 convolution
  • 15 篇 pattern recognit...
  • 14 篇 transformers
  • 12 篇 object detection
  • 12 篇 magnetic resonan...
  • 12 篇 neural networks
  • 11 篇 electroencephalo...
  • 11 篇 computational mo...
  • 11 篇 image coding
  • 11 篇 visualization
  • 11 篇 artificial intel...

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 50 篇 guangdong key la...
  • 45 篇 guangdong provin...
  • 41 篇 key laboratory o...
  • 33 篇 school of artifi...
  • 32 篇 shenzhen huazhon...
  • 31 篇 school of comput...
  • 26 篇 key laboratory o...
  • 25 篇 alibaba group
  • 24 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 16 篇 university of ch...
  • 13 篇 school of artifi...
  • 12 篇 huazhong univers...
  • 12 篇 peng cheng labor...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...

作者

  • 60 篇 wu dongrui
  • 55 篇 sang nong
  • 45 篇 gao changxin
  • 28 篇 cao zhiguo
  • 27 篇 liu zaiyi
  • 26 篇 zeng zhigang
  • 24 篇 wang xiang
  • 23 篇 hai-tao zhang
  • 23 篇 ding mingyue
  • 22 篇 zhang shiwei
  • 22 篇 shi zhenwei
  • 19 篇 yin jian
  • 19 篇 zhigang zeng
  • 18 篇 huang jian
  • 17 篇 qing zhiwu
  • 17 篇 liu jian
  • 17 篇 yu jianxing
  • 17 篇 jian huang
  • 16 篇 pan linqiang
  • 16 篇 zaiyi liu

语言

  • 952 篇 英文
  • 73 篇 其他
  • 21 篇 中文
检索条件"机构=Key Laboratory of Intelligence Image Processing and Analysis"
1047 条 记 录,以下是771-780 订阅
排序:
CS-Net: A Two-Step Epithelium Tissue Segmentation Regression Network with CS-Gate Attention on Histology images
SSRN
收藏 引用
SSRN 2022年
作者: Gong, Zhengze Pan, Xipeng Han, Chu Qiu, Bingjiang Zhao, Bingchao Liu, Yu Chen, Xinyi Liu, Wenbin Chen, Zhihua Lu, Cheng Liu, Zaiyi Fang, Gang Institute of Computing Science and Technology Guangzhou University Guangzhou510006 China Department of Radiology Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences Guangzhou510080 China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences Guangzhou510080 China Guangdong Cardiovascular Institute Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences Guangzhou510080 China School of Computer Science and Information Security Guilin University of Electronic Technology Guilin541004 China
Background and Objective: The segmentation of oropharyngeal epithelium tissue within Haematoxylin&Eosin(HE)-stained pathological images is of great clinical significance for the pathological analysis and diagnosis... 详细信息
来源: 评论
On the Detection of Shilling Attacks in Federated Collaborative Filtering
On the Detection of Shilling Attacks in Federated Collaborat...
收藏 引用
Reliable Distributed Systems
作者: Yangfan Jiang Yipeng Zhou Di Wu Chao Li Yan Wang School of Data and Computer Science Sun Yat-sen University Guangzhou China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University) Ministry of Education China Macquarie University Sydney NSW Australia Tencent Inc Shenzhen China
Federated collaborative filtering (Fed-CF) is a variant of federated learning (FL) models, which can protect user privacy in recommender systems. In Fed-CF, the recommendation model is collectively trained across mult... 详细信息
来源: 评论
Observer-Based Robust Containment Control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
Chinese Control Conference (CCC)
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunications and Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) Nanjing PR China School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry ofChina Huazhong University of Science and Technology Wuhan PR China
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset
arXiv
收藏 引用
arXiv 2021年
作者: Qin, Yulei Gu, Yun Zhang, Hanxiao Yang, Jie Wang, Lihui Wang, Zhexin Yao, Feng Zhu, Yue-Min Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China CREATIS INSA Lyon CNRS UMR 5220 INSERM U1206 Université de Lyon Villeurbanne69621 France Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang550025 China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai200025 China
Objectives: To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. Materials and Methods: The LID... 详细信息
来源: 评论
An Interpretable Machine Learning Model Assists In Predicting Induction Chemotherapy Response and Survival for Locoregionally Advanced Nasopharyngeal Carcinoma Using MRI: A Multi-Center Study
SSRN
收藏 引用
SSRN 2024年
作者: Liao, Hai Chen, Xiao-Bo Zhao, Yang Pei, Wei Xia, Huang Wei, Wei Lai, Peng-Hao Jin, Wei-Feng Bao, Hua-Yan Liang, Xue-Li Xiao, Lei Chen, Zhen-Yu Lu, Shao-Lu Su, Dan-Ke Lu, Bing-Feng Pan, Ling-Hui Guangxi Nanning China Southern Medical University Guangdong Guangzhou China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangdong Guangzhou China Department of Radiology Wuzhou Red Cross Hospital Guangxi Wuzhou China The First School of Clinical Medicine Zhejiang Chinese Medical University Hangzhou China College of Pharmaceutical Science Zhejiang Chinese Medical University Zhejiang Hangzhou China Department of Radiology The Second Affiliated Hospital of Guangxi Medical University Guangxi Nanning China Department of Anesthesiology Guangxi Medical University Cancer Hospital Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction Guangxi Clinical Research Center for Anesthesiology Guangxi Nanning China Department of Anesthesiology Guangxi Medical University Cancer Hospital Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction Guangxi Clinical Research Center for Anesthesiology No. 651 HeDi Road Guangxi Nanning530021 China Department of Radiology The Second Affiliated Hospital of Guangxi Medical University No.166 DaXuedong Road Guangxi Nanning530007 China Department of Radiology Guangxi Medical University Cancer Hospital No. 651 HeDi Road Guangxi Nanning530021 China Department of Radiology Wuzhou Red Cross Hospital No.3-1 XinXing Road Guangxi Wuzhou543002 China
Background: Variations of induction chemotherapy (ICT) response and survival are frequently observed in locoregionally advanced nasopharyngeal carcinoma (LANPC) patients. It remains uncertain which patients can benefi... 详细信息
来源: 评论
Channel and Trials Selection for Reducing Covariate Shift in EEG-based Brain-Computer Interfaces
Channel and Trials Selection for Reducing Covariate Shift in...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: He He Dongrui Wu Key Laboratory for Image Processing and Intelligent Control Ministry of Education and the School of Artificial Intelligence and Automation Huazhong University of Science and Technology
This paper aims at reducing the calibration effort of EEG-based brain-computer interfaces (BCIs). More specifically, in the context of cross-subject classification, we correct covariate shift of EEG data from differen... 详细信息
来源: 评论
Depth Guided Cross-modal Residual Adaptive Network for RGB-D Salient Object Detection
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1873卷
作者: Zhengyun Zhao Qingpeng Yang Shangqin Yang Jun Wang School of Artificial Intelligence Henan University Kaifeng Henan 475004 China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng Henan 475004 China
Depth modal features can provide complementary information for salient object detection (SOD). Most of the existing RGB-D SOD methods focus on fully combining RGB and Depth modal features without distinguishing them. ...
来源: 评论
BoostTree and BoostForest for Ensemble Learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhao, Changming Wu, Dongrui Huang, Jian Yuan, Ye Zhang, Hai-Tao Peng, Ruimin Shi, Zhenhua Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen China The Autonomous Intelligence Unmanned Systems Engineering Research Center of Ministry of Education of China The State Key Lab of Digital Manufacturing Equipment and Technology Wuhan China
Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have ... 详细信息
来源: 评论
Deep reinforcement learning with a stage incentive mechanism of dense reward for robotic trajectory planning
arXiv
收藏 引用
arXiv 2020年
作者: Peng, Gang Yang, Jin Khyam, Mohammad Omar Key Laboratory of Image Processing and Intelligent Control Ministry of EducationB School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China School of Automation South East University Nanjing China School of Engineering and Technology Central Queensland University Melbourne Australia
To improve the efficiency of deep reinforcement learning (DRL)-based methods for robot manipulator trajectory planning in random working environments, we present three dense reward functions. These rewards differ from... 详细信息
来源: 评论
ÆMMamba: An Efficient Medical Segmentation Model With Edge Enhancement
收藏 引用
IEEE journal of biomedical and health informatics 2025年 PP卷 PP页
作者: Xingbo Dong Bowen Zhou Chen Yin Iman Yi Liao Zhe Jin Zhaozhao Xu Bin Pu Anhui University Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging Hefei 230093 China Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen China Nanchang Hangkong University Jiangxi Provincial Key Laboratory of Image Processing and Pattern Recognition Nanchang 330063 China University of Nottingham Malaysia Campus School of Computer Science Semenyih 43500 Malaysia Henan Polytechnic University School of Computer Science and Technology Jiaozuo China Hunan University College of Computer Science and Electronic Engineering Changsha China
Medical image segmentation is critical for disease diagnosis, treatment planning, and prognosis assessment, yet the complexity and diversity of medical images pose significant challenges to accurate segmentation. Whil... 详细信息
来源: 评论