咨询与建议

限定检索结果

文献类型

  • 539 篇 期刊文献
  • 490 篇 会议

馆藏范围

  • 1,029 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 685 篇 工学
    • 430 篇 计算机科学与技术...
    • 394 篇 软件工程
    • 148 篇 生物医学工程(可授...
    • 136 篇 生物工程
    • 119 篇 光学工程
    • 110 篇 信息与通信工程
    • 99 篇 电气工程
    • 95 篇 控制科学与工程
    • 72 篇 电子科学与技术(可...
    • 70 篇 机械工程
    • 35 篇 化学工程与技术
    • 30 篇 仪器科学与技术
    • 20 篇 动力工程及工程热...
    • 19 篇 材料科学与工程(可...
    • 18 篇 交通运输工程
    • 17 篇 力学(可授工学、理...
  • 413 篇 理学
    • 219 篇 数学
    • 144 篇 生物学
    • 119 篇 物理学
    • 72 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 36 篇 化学
  • 152 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 29 篇 工商管理
  • 97 篇 医学
    • 89 篇 临床医学
    • 73 篇 基础医学(可授医学...
    • 56 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 14 篇 农学
  • 12 篇 法学
  • 9 篇 教育学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 27 篇 feature extracti...
  • 25 篇 image segmentati...
  • 25 篇 semantics
  • 24 篇 machine learning
  • 23 篇 deep learning
  • 23 篇 training
  • 18 篇 image reconstruc...
  • 17 篇 image processing
  • 16 篇 convolution
  • 15 篇 pattern recognit...
  • 14 篇 semantic segment...
  • 14 篇 transformers
  • 12 篇 object detection
  • 12 篇 magnetic resonan...
  • 12 篇 neural networks
  • 11 篇 electroencephalo...
  • 11 篇 computational mo...
  • 11 篇 image coding
  • 11 篇 visualization
  • 11 篇 artificial intel...

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 48 篇 guangdong key la...
  • 43 篇 guangdong provin...
  • 40 篇 key laboratory o...
  • 32 篇 school of artifi...
  • 31 篇 shenzhen huazhon...
  • 30 篇 school of comput...
  • 26 篇 key laboratory o...
  • 25 篇 alibaba group
  • 24 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 16 篇 university of ch...
  • 13 篇 huazhong univers...
  • 12 篇 school of artifi...
  • 12 篇 peng cheng labor...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...

作者

  • 60 篇 wu dongrui
  • 55 篇 sang nong
  • 45 篇 gao changxin
  • 28 篇 cao zhiguo
  • 26 篇 zeng zhigang
  • 25 篇 liu zaiyi
  • 24 篇 wang xiang
  • 23 篇 hai-tao zhang
  • 23 篇 ding mingyue
  • 22 篇 zhang shiwei
  • 22 篇 shi zhenwei
  • 19 篇 yin jian
  • 19 篇 zhigang zeng
  • 18 篇 huang jian
  • 17 篇 qing zhiwu
  • 17 篇 liu jian
  • 17 篇 jian huang
  • 16 篇 pan linqiang
  • 16 篇 yu jianxing
  • 15 篇 wang xiaoping

语言

  • 963 篇 英文
  • 45 篇 其他
  • 20 篇 中文
检索条件"机构=Key Laboratory of Intelligence Image Processing and Analysis"
1029 条 记 录,以下是861-870 订阅
排序:
A hierarchical image matting model for blood vessel segmentation in fundus images
arXiv
收藏 引用
arXiv 2017年
作者: Fan, Zhun Lu, Jiewei Li, Wenji Wei, Caimin Huang, Han Cai, Xinye Chen, Xinjian Guangdong Provincial Key Laboratory of Digital Signal and Image Processing College of Engineering Shantou University Shan'tou515063 China Department of Mathematics Shantou University Shan'tou515063 China School of Software Engineering South China University of Technology Guang'zhou510006 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiang'su210016 China Medical Image Processing and Analysis Lab School of Electronics and Information Engineering Soochow University Su'zhou215006 China
In this paper, a hierarchical image matting model is proposed to extract blood vessels from fundus images. More specifically, a hierarchical strategy utilizing the continuity and extendibility of retinal blood vessels... 详细信息
来源: 评论
Topology analysis system for vehicular Ad Hoc network  17
Topology analysis system for vehicular Ad Hoc network
收藏 引用
17th International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2016
作者: Dong, Baihong Deng, Jian Wu, Weigang Meng, Tianyu 1. School of Data and Computer Science Sun Yat-Sen Univ. China Guangdong Province Key Lab. of Big Data Analysis and Processing China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China
With the development of the technology, Vehicular Ad-hoc Network is developing rapidly and continuously. And many new algorithms in VANET were put forward. For example, many people apply the Named Data Networks or Sof... 详细信息
来源: 评论
Software Defined Networking Based On-Demand Routing Protocol in Vehicle Ad Hoc Networks
Software Defined Networking Based On-Demand Routing Protocol...
收藏 引用
International Conference on Mobile Ad-hoc and Sensor Networks, MSN
作者: Baihong Dong Weigang Wu Zhiwei Yang Junjie Li School of Data and Computer Science Sun Yat-Sen University Guangdong Key Lab. of Big Data Analysis and Processing Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou
This paper comes up with a SDN based On-Demand Routing Protocol, SVAO, which separates data forwarding layer and network control layer, as in SDN, to enhance the data transmission efficiency within VANETs. The Roadsid... 详细信息
来源: 评论
Person re-identification with density-distance unsupervised salience learning  8th
Person re-identification with density-distance unsupervised ...
收藏 引用
8th International Conference on image and Graphics, ICIG 2015
作者: Zhou, Baoliang Zheng, Aihua Jiang, Bo Li, Chenglong Tang, Jin Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology AnHui University Hefei China Key Laboratory of Industry Image Processing and Analysis in Anhui Province Hefei China
Human salience of pedestrians images is distinctive and has been shown importantly in person re-identification (or pedestrians identification) problem. Thus, how to obtain the salient area of pedestrian images is impo... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Small universal simple spiking neural P systems with weights
收藏 引用
Science China(Information Sciences) 2014年 第9期57卷 19-29页
作者: ZENG XiangXiang PAN LinQiang PREZ-JIMNEZ Mario J. Key Laboratory of Image Processing and Intelligent Control School of AutomationHuazhong University of Science and Technology Department of Computer Science and Artificial Intelligence University of SevillaAvda. Reina Mercedes s/nSevilla 41012Spain
Spiking neural P systems with weights(WSN P systems,for short)are a new variant of spiking neural P systems,where the rules of a neuron are enabled when the potential of that neuron equals a given *** is known that WS... 详细信息
来源: 评论
The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016) Abstracts
收藏 引用
BMC MEDICAL IMAGING 2016年 第SUPPL 1期16卷 65-65页
作者: [Anonymous] Department of MRI Shandong Medical Imaging Research Institute Affiliated to Shandong University Jinan Shandong 250021 People’s Republic of China Department of Interventional Radiology Shandong Provincial Hospital Affiliated to Shandong University Jinan Shandong 250021 People’s Republic of China College of Information Science and Technology Engr. Research Center of Digitized Textile & Fashion Tech. for Ministry of Education Donghua University Shanghai 201620 China Intelligent multimedia information processing Lab College of Software Northeastern University Shenyang Liaoning Province 110004 China Institute of Biomedical and Health Engineering Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China School of Computer Science and Technology Nanjing Normal University Nanjing China Department of Electrical Engineering The City College of New York CUNY New York USA Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing Nanjing China School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu 210046 China College of Engineering Nanyang Technological University Singapore 639798 Singapore School of Electronic Information Shanghai Dianji University Shanghai China School of Natural Sciences and Mathematics Shepherd University Shepherdstown WV 25443 USA Davis College of Agriculture Natural Resources and Design West Virginia University Morgantown WV 26505 USA State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China Center of Medical Physics and Technology Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei China College of Agricultural and Life Sciences University of Florida Gainesville FL 32611 USA Courant Institute of Mathematical Sciences New York University New York NY 10012 USA Translational Imaging Division & MRI Unit Columbia University and New York State Psychiatric Institute New York NY 10032 USA Guangxi Key Laboratory of Manufacturing System & Adv
来源: 评论
A joint strength based genetic algorithm for network clustering
收藏 引用
Journal of Computational Information Systems 2014年 第14期10卷 5915-5922页
作者: Zhang, Xingyi Ding, Zhuanlian Tang, Jin Luo, Bin Key Laboratory of Industrial Image Processing and Analysis of Anhui Province School of Computer Science and Technology Anhui University Hefei China
The quality of network clustering is partially determined by its evaluation criterion. In this paper, a joint strength based genetic algorithm (JSGA) for network clustering is proposed, where the joint strength which ... 详细信息
来源: 评论
Computational efficiency and universality of timed P systems with membrane creation
Computational efficiency and universality of timed P systems...
收藏 引用
9th International Conference on Bio-Inspired Computing - Theories and Applications, BIC-TA 2014
作者: Song, Bosheng P É Rez-Jim É Nez, Mario J. Pan, Linqiang Key Laboratory of Image Information Processing and Intelligent Control School of Automation Huazhong University of Science and Technology Wuhan Hubei430074 China Department of Computer Science and Artificial Intelligence University of Sevilla Avda. Reina Mercedes s/n Sevilla41012 Spain
In this work, inspired from this biological motivation that in living cells, the execution time of different biological processes is difficult to know precisely and very sensitive to environmental factors that might b... 详细信息
来源: 评论
A novel hybrid intelligence algorithm for solving combinatorial optimization problems
收藏 引用
Journal of Computing Science and Engineering 2014年 第4期8卷 199-206页
作者: Deng, Wu Chen, Han Li, He Software Institute Dalian Jiaotong University Dalian China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou China The Artificial Intelligence Key Laboratory of Sichuan Province Sichuan University of Science and Engineering Zigong China Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis Guangxi University for Nationalities Nanning China
The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields loca... 详细信息
来源: 评论