咨询与建议

限定检索结果

文献类型

  • 3,370 篇 会议
  • 2,271 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 5,643 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,731 篇 工学
    • 2,580 篇 计算机科学与技术...
    • 2,109 篇 软件工程
    • 989 篇 信息与通信工程
    • 477 篇 生物工程
    • 449 篇 控制科学与工程
    • 428 篇 电子科学与技术(可...
    • 407 篇 电气工程
    • 321 篇 光学工程
    • 281 篇 生物医学工程(可授...
    • 236 篇 机械工程
    • 221 篇 化学工程与技术
    • 157 篇 仪器科学与技术
    • 109 篇 动力工程及工程热...
    • 105 篇 网络空间安全
    • 95 篇 材料科学与工程(可...
    • 84 篇 建筑学
    • 81 篇 交通运输工程
  • 2,152 篇 理学
    • 1,236 篇 数学
    • 560 篇 物理学
    • 524 篇 生物学
    • 318 篇 统计学(可授理学、...
    • 229 篇 化学
    • 175 篇 系统科学
  • 959 篇 管理学
    • 527 篇 图书情报与档案管...
    • 454 篇 管理科学与工程(可...
    • 151 篇 工商管理
  • 201 篇 医学
    • 167 篇 临床医学
    • 142 篇 基础医学(可授医学...
    • 101 篇 药学(可授医学、理...
  • 125 篇 法学
    • 109 篇 社会学
  • 59 篇 农学
  • 53 篇 教育学
  • 51 篇 经济学
  • 17 篇 文学
  • 17 篇 军事学
  • 12 篇 艺术学
  • 4 篇 哲学

主题

  • 245 篇 feature extracti...
  • 202 篇 semantics
  • 140 篇 training
  • 107 篇 deep learning
  • 100 篇 computational mo...
  • 97 篇 accuracy
  • 90 篇 convolution
  • 81 篇 object detection
  • 75 篇 image segmentati...
  • 71 篇 neural networks
  • 71 篇 data mining
  • 68 篇 optimization
  • 65 篇 signal processin...
  • 64 篇 predictive model...
  • 61 篇 laboratories
  • 61 篇 machine learning
  • 58 篇 robustness
  • 56 篇 contrastive lear...
  • 56 篇 clustering algor...
  • 56 篇 data models

机构

  • 210 篇 key laboratory o...
  • 210 篇 shanghai key lab...
  • 189 篇 hubei province k...
  • 184 篇 school of comput...
  • 156 篇 shanghai key lab...
  • 145 篇 key laboratory o...
  • 143 篇 school of comput...
  • 117 篇 college of compu...
  • 102 篇 key laboratory o...
  • 96 篇 school of comput...
  • 74 篇 fujian provincia...
  • 73 篇 shanghai key lab...
  • 72 篇 university of ch...
  • 72 篇 college of compu...
  • 69 篇 college of mathe...
  • 68 篇 school of comput...
  • 62 篇 key laboratory o...
  • 62 篇 hubei province k...
  • 61 篇 school of comput...
  • 53 篇 anhui university...

作者

  • 108 篇 huang xuanjing
  • 83 篇 qiu xipeng
  • 82 篇 huang zhixiang
  • 73 篇 li yingsong
  • 63 篇 li zuoyong
  • 58 篇 zhixiang huang
  • 57 篇 yingsong li
  • 57 篇 huang qingming
  • 55 篇 shen linlin
  • 48 篇 zhang qi
  • 47 篇 xianliang wu
  • 47 篇 xue xiangyang
  • 44 篇 li wei
  • 43 篇 li bin
  • 42 篇 zhang yuejie
  • 40 篇 shi minjia
  • 39 篇 gui tao
  • 39 篇 feng rui
  • 32 篇 zhang fuquan
  • 32 篇 xu qianqian

语言

  • 5,226 篇 英文
  • 323 篇 其他
  • 108 篇 中文
检索条件"机构=Key Laboratory of Intelligent Computer & Signal Processing"
5643 条 记 录,以下是91-100 订阅
排序:
An Optimization Method Based on Deep Learning for Electromagnetic Inverse Scattering Problems
An Optimization Method Based on Deep Learning for Electromag...
收藏 引用
2024 International Applied Computational Electromagnetics Society Symposium, ACES-China 2024
作者: Hu, Wangchao Xie, Guoda Dai, Jinpeng Hou, Guilin Li, Xiang Huang, Zhixiang Anhui University The Key Laboratory of Intelligent Computing and Signal Processing Hefei China Anhui Province Key Laboratory of Target Recognition and Feature Extraction Education of Anhui Province Luan237000 China Ministry of Education The Key Laboratory of Intelligent Computing and Signal Processing Hefei China Anhui Province Anhui University Key Laboratory of Electromagnetic Environmental Sensing Hefei230601 China Anhui University Hefei China
In this paper, a deep learning optimization method combining U-net model and cycle generative adversarial network (Cycle-GAN) is proposed to efficiently solve the electromagnetic inverse scattering (EMIS) problems. Fi... 详细信息
来源: 评论
A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第9期33卷 4861-4875页
作者: Yang, Shangshang Tian, Ye He, Cheng Zhang, Xingyi Tan, Kay Chen Jin, Yaochu Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei China Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Southern University of Science and Technology Shenzhen China Department of Computing The Hong Kong Polytechnic University Hong Kong SAR Department of Computer Science University of Surrey Guildford U.K
It has been widely recognized that the efficient training of neural networks (NNs) is crucial to classification performance. While a series of gradient-based approaches have been extensively developed, they are critic... 详细信息
来源: 评论
Face Forgery Detection Based on Fine-Grained Clues and Noise Inconsistency
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年 第1期6卷 144-158页
作者: Zhang, Dengyong He, Ruiyi Liao, Xin Li, Feng Chen, Jiaxin Yang, Gaobo Changsha University of Science and Technology Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation the School of Computer and Communication Engineering Changsha410114 China Hunan University Changsha410082 China
Deepfake detection has gained increasing research attention in media forensics, and a variety of works have been produced. However, subtle artifacts might be eliminated by compression, and the convolutional neural net... 详细信息
来源: 评论
Simulation extractable SNARKs based on target linearly collision-resistant oracle
收藏 引用
Science China(Technological Sciences) 2024年 第9期67卷 2853-2866页
作者: WANG LiGuan LI Yuan ZHANG ShuangJun CAI DongLiang KAN HaiBin Shanghai Key Laboratory of Intelligent Information Processing School of Computer ScienceFudan UniversityShanghai 200433China Shanghai Engineering Research Center of Blockchain Shanghai 200433China Yiwu Research Institute of Fudan University Yiwu 322000China
The famous zero-knowledge succinct non-interactive arguments of knowledge(zk-SNARK) was proposed by Groth in ***, the construction is based on quadratic arithmetic programs which are highly efficient concerning the pr... 详细信息
来源: 评论
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning Through Trap Problems
Exploring the Compositional Deficiency of Large Language Mod...
收藏 引用
2024 Conference on Empirical Methods in Natural Language processing, EMNLP 2024
作者: Zhao, Jun Tong, Jingqi Mou, Yurong Zhang, Ming Zhang, Qi Huang, Xuanjing School of Computer Science Fudan University China Shanghai Key Laboratory of Intelligent Information Processing Fudan University China
Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. ... 详细信息
来源: 评论
Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion
收藏 引用
computers, Materials & Continua 2024年 第10期81卷 1391-1407页
作者: Ke Li Xiaofeng Wang Hu Wang College of Computer Science and Engineering North Minzu UniversityYinchuan750021China The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission North Minzu UniversityYinchuan750021China
In the realm of data privacy protection,federated learning aims to collaboratively train a global ***,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy ... 详细信息
来源: 评论
Improving Speech Perceptual Quality and Intelligibility Through Sub-band Temporal Envelope Characteristics  18th
Improving Speech Perceptual Quality and Intelligibility Thr...
收藏 引用
18th National Conference on Man-Machine Speech Communication, NCMMSC 2023
作者: Wu, Ruilin Huang, Zhihua Song, Jingyi Liang, Xiaoming School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of Signal Detection and Processing in Xinjiang Urumqi China
In the speech enhancement (SE) model, using auxiliary loss based on acoustic parameters can improve enhancement effects. However, currently used acoustic parameters focus on frequency domain information, neglecting th... 详细信息
来源: 评论
MSFSAN: A Novel Multi-Scale Spatio-Temporal Feature Screening Attention Network for Urban Carbon Emission Prediction
MSFSAN: A Novel Multi-Scale Spatio-Temporal Feature Screenin...
收藏 引用
2024 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2024
作者: Wang, Ben Qin, Xizhong Qin, Jiwei Zhang, Xiaoyu Ma, Haodong College of Computer Science and Technology Xinjiang University Xinjiang Key Laboratory of Signal Detection and Processing Ürümqi830046 China
In order to cope with the increasingly severe global energy conservation and emission reduction problems, research on urban carbon emission prediction is of great significance. The existing methods mainly use time ser... 详细信息
来源: 评论
Spatiality-Aligned Graph Convolution Hashing for Unsupervised Cross-Modal Retrieval  2
Spatiality-Aligned Graph Convolution Hashing for Unsupervise...
收藏 引用
2nd IEEE International Conference on signal, Information and Data processing, ICSIDP 2024
作者: Li, Fang Dai, Liulian Lan, Rushi Yang, Rui Luo, Xiaonan Guangxi Key Laboratory of Image and Graphic Intelligent Processing School of Computer Science and Information Security Guilin541004 China
Unsupervised cross-modal retrieval leveraging hash learning has attracted a lot of interest from academics, primarily due to its minimal storage requirements, swift retrieval speeds, and label-free nature, making it a... 详细信息
来源: 评论
A Lightweight Music Source Separation Model with Graph Convolution Network  1
收藏 引用
18th National Conference on Man-Machine Speech Communication, NCMMSC 2023
作者: Zhu, Mengying Wang, Liusong Hu, Ying School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of Signal Detection and Processing in Xinjiang Urumqi China
With the rapid advancement of deep neural networks, there has been a significant improvement in the performance of music source separation methods. However, most of them primarily focus on improving their separation p... 详细信息
来源: 评论