咨询与建议

限定检索结果

文献类型

  • 1,425 篇 会议
  • 1,004 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 2,431 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,490 篇 工学
    • 1,051 篇 计算机科学与技术...
    • 884 篇 软件工程
    • 334 篇 信息与通信工程
    • 176 篇 控制科学与工程
    • 162 篇 电气工程
    • 142 篇 电子科学与技术(可...
    • 138 篇 生物工程
    • 120 篇 机械工程
    • 95 篇 光学工程
    • 76 篇 生物医学工程(可授...
    • 75 篇 化学工程与技术
    • 53 篇 仪器科学与技术
    • 53 篇 动力工程及工程热...
    • 44 篇 材料科学与工程(可...
    • 39 篇 建筑学
    • 36 篇 土木工程
    • 35 篇 网络空间安全
    • 29 篇 交通运输工程
  • 908 篇 理学
    • 587 篇 数学
    • 232 篇 物理学
    • 166 篇 生物学
    • 152 篇 统计学(可授理学、...
    • 80 篇 化学
    • 74 篇 系统科学
  • 416 篇 管理学
    • 227 篇 图书情报与档案管...
    • 203 篇 管理科学与工程(可...
    • 73 篇 工商管理
  • 63 篇 医学
    • 50 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 48 篇 法学
    • 35 篇 社会学
  • 36 篇 农学
  • 24 篇 经济学
  • 19 篇 教育学
  • 9 篇 哲学
  • 6 篇 艺术学
  • 4 篇 军事学
  • 3 篇 文学

主题

  • 115 篇 feature extracti...
  • 93 篇 semantics
  • 67 篇 information proc...
  • 65 篇 training
  • 60 篇 laboratories
  • 50 篇 computers
  • 47 篇 computational mo...
  • 43 篇 face recognition
  • 43 篇 visualization
  • 42 篇 data mining
  • 40 篇 image segmentati...
  • 40 篇 accuracy
  • 39 篇 optimization
  • 37 篇 deep learning
  • 36 篇 machine learning
  • 36 篇 humans
  • 34 篇 robustness
  • 30 篇 object detection
  • 30 篇 support vector m...
  • 29 篇 predictive model...

机构

  • 431 篇 key laboratory o...
  • 215 篇 university of ch...
  • 83 篇 key laboratory o...
  • 81 篇 key laboratory o...
  • 64 篇 peng cheng labor...
  • 64 篇 college of compu...
  • 53 篇 college of mathe...
  • 48 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 hunan provincial...
  • 46 篇 the key laborato...
  • 44 篇 school of comput...
  • 44 篇 graduate univers...
  • 43 篇 college of infor...
  • 40 篇 fujian provincia...
  • 40 篇 chinese academy ...
  • 35 篇 key laboratory o...
  • 34 篇 fujian key labor...
  • 34 篇 national enginee...
  • 32 篇 school of comput...

作者

  • 95 篇 zhongzhi shi
  • 89 篇 shi zhongzhi
  • 74 篇 xilin chen
  • 72 篇 shiguang shan
  • 62 篇 liu qun
  • 62 篇 huang qingming
  • 48 篇 li yingsong
  • 44 篇 xu qianqian
  • 40 篇 feng yang
  • 38 篇 huang zhixiang
  • 35 篇 yingsong li
  • 35 篇 he qing
  • 32 篇 wen gao
  • 31 篇 qing he
  • 29 篇 guo wenzhong
  • 28 篇 yang zhiyong
  • 28 篇 zhuang fuzhen
  • 28 篇 zhixiang huang
  • 27 篇 jiang kai
  • 26 篇 li hua

语言

  • 2,156 篇 英文
  • 235 篇 其他
  • 56 篇 中文
检索条件"机构=Key Laboratory of Intelligent Computing and Distributed Information Processing"
2431 条 记 录,以下是2381-2390 订阅
排序:
Some marginal learning algorithms for unsupervised problems
Some marginal learning algorithms for unsupervised problems
收藏 引用
IEEE International Conference on Intelligence and Security Informatics, ISI 2005
作者: Tao, Qing Wu, Gao-Wei Wang, Fei-Yue Wang, Jue Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences Beijing 100080 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100080 China
In this paper, we investigate one-class and clustering problems by using statistical learning theory. To establish a universal framework, a unsupervised learning problem with predefined threshold η is formally descri... 详细信息
来源: 评论
Parallel web spiders for cooperative information gathering
收藏 引用
4th International Conference on Grid and Cooperative computing - GCC 2005
作者: Luo, Jiewen Shi, Zhongzhi Wang, Maoguang Wang, Wei Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences PO Box 2704-28 Beijing 100080 China Graduate School of Chinese Academy of Sciences
Web spider is a widely used approach to obtain information for search engines. As the size of the Web grows, it becomes a natural choice to parallelize the spider's crawling process. This paper presents a parallel... 详细信息
来源: 评论
A novel feature extraction algorithm
A novel feature extraction algorithm
收藏 引用
International Conference on Machine Learning and Cybernetics, ICMLC 2005
作者: Ding, Shi-Fei Shi, Zhong-Zhi Wang, Yun-Cheng Li, Shu-Shan College of Information Science and Engineering Shandong Agricultural University Taian 271018 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100080 China College of Information Science and Engineering Shandong University of Science and Technology Qingdao 266510 China
Feature extraction or selection is one of the most importmant steps in pattern recognition or pattern classification, data mining, machine learning and so on. In this paper, we introduce the information theory, propos... 详细信息
来源: 评论
A kind of dimension reduction method for classification based on hyper surface
A kind of dimension reduction method for classification base...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Qing He Xiu-rong Zhao Zong-Zhi Shi The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
Based on Jordan curve theorem, a universal classification method based on hyper surface is recently put forward. The experiments show that the new method can efficiently and accurately classify large data size up to 1... 详细信息
来源: 评论
information feature analysis and improved algorithm of PCA
Information feature analysis and improved algorithm of PCA
收藏 引用
International Conference on Machine Learning and Cybernetics, ICMLC 2005
作者: Ding, Shi-Fei Shi, Zhong-Zhi Liang, Yong Jin, Feng-Xiang College of Information Science and Engineering Shandong Agricultural University Taian 271018 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100080 China College of Geo-Information Science and Engineering Shandong University of Science and Technology Qingdao 266510 China
Principal component analysis (PCA) is an important method in multivariate statistical analysis, and its main idea is compression of dimensionality including variables and samples. In this paper, based on the ideas con... 详细信息
来源: 评论
Online infomax algorithm and its application to remove EEG artifacts
Online infomax algorithm and its application to remove EEG a...
收藏 引用
2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
作者: Xiaopei, Wu Zhongfu, Ye Schoo1 of Information Science and Technology University of Science and Technology of China Hefei 230026 Anhui province China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Anhui University Hefei 230039 Anhui province China
A online infomax algorithm is proposed in this paper. The performances and properties of this online algorithm is investigated in detail. To the problem of the artifacts removal in real life EEG signal, both the onlin... 详细信息
来源: 评论
TRANSLATING ONTOLOGIES TO DEFAULT LOGIC
TRANSLATING ONTOLOGIES TO DEFAULT LOGIC
收藏 引用
IFIP TC12 WG12.5-Second IFIP Conference on Artificial Intelligence Applications and Innovations(AIAI2005)
作者: Yu Sun Yuefei Sui Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of Sciences Institute of Computer Science and Information Technology Yunnan Normal University
The translation of inheritance nets to default logic has been discussed by Etherington[9],Touretzky[10],*** and inheritance nets are similar in some aspects and based on methods of translating inheritance nets to defa... 详细信息
来源: 评论
Hierarchical iterative and self-supervised method for concept-word acquisition from large-scale Chinese corpora
Hierarchical iterative and self-supervised method for concep...
收藏 引用
IEEE International Conference on Natural Language processing and Knowledge Engineering (NLP-KE)
作者: Guogang Tian Cungen Cao Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
This paper proposes a hierarchical iterative and self-supervised method (HISS) to acquire concept words from a large-scale, un-segmented Chinese corpus. It has two levels of iteration: the EM-CLS algorithm and the Vit... 详细信息
来源: 评论
The Knowledge Grid and Its Methodology
The Knowledge Grid and Its Methodology
收藏 引用
International Conference on Semantics, Knowledge and Grid (SKG)
作者: Hai Zhuge China Knowledge Grid Research Group Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
In the human, society, interconnection environment and systems methodology perspectives, this paper answers the following questions: What are the Knowledge Grid and its distinguished features? What are its methodology... 详细信息
来源: 评论
Analysis and Applications of PCA information Features
收藏 引用
通讯和计算机(中英文版) 2005年 第9期2卷 25-31页
作者: Shifei Ding Zhongzhi Shi College of lnformation Science and Engineering Shandong Agricultural University Tai 'an 271018 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beo'ing 100080 China
来源: 评论