咨询与建议

限定检索结果

文献类型

  • 2,260 篇 会议
  • 1,475 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 3,740 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,366 篇 工学
    • 1,517 篇 计算机科学与技术...
    • 1,233 篇 软件工程
    • 595 篇 信息与通信工程
    • 383 篇 电子科学与技术(可...
    • 319 篇 电气工程
    • 300 篇 控制科学与工程
    • 193 篇 生物工程
    • 182 篇 机械工程
    • 171 篇 光学工程
    • 129 篇 生物医学工程(可授...
    • 122 篇 化学工程与技术
    • 115 篇 仪器科学与技术
    • 84 篇 动力工程及工程热...
    • 67 篇 材料科学与工程(可...
    • 58 篇 网络空间安全
    • 53 篇 建筑学
    • 46 篇 土木工程
  • 1,415 篇 理学
    • 902 篇 数学
    • 411 篇 物理学
    • 225 篇 生物学
    • 216 篇 统计学(可授理学、...
    • 134 篇 化学
    • 124 篇 系统科学
  • 565 篇 管理学
    • 299 篇 管理科学与工程(可...
    • 283 篇 图书情报与档案管...
    • 100 篇 工商管理
  • 97 篇 医学
    • 81 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 42 篇 药学(可授医学、理...
  • 58 篇 法学
    • 45 篇 社会学
  • 49 篇 农学
  • 33 篇 经济学
  • 21 篇 教育学
  • 11 篇 军事学
  • 10 篇 艺术学
  • 9 篇 哲学
  • 8 篇 文学

主题

  • 142 篇 feature extracti...
  • 105 篇 semantics
  • 87 篇 training
  • 78 篇 laboratories
  • 68 篇 information proc...
  • 65 篇 image segmentati...
  • 65 篇 computational mo...
  • 55 篇 optimization
  • 55 篇 data mining
  • 53 篇 computers
  • 50 篇 face recognition
  • 49 篇 signal processin...
  • 49 篇 accuracy
  • 48 篇 visualization
  • 47 篇 robustness
  • 46 篇 signal processin...
  • 44 篇 deep learning
  • 42 篇 support vector m...
  • 42 篇 humans
  • 41 篇 machine learning

机构

  • 439 篇 key laboratory o...
  • 224 篇 university of ch...
  • 210 篇 key laboratory o...
  • 102 篇 key laboratory o...
  • 83 篇 key laboratory o...
  • 65 篇 school of comput...
  • 65 篇 peng cheng labor...
  • 64 篇 college of compu...
  • 62 篇 key laboratory o...
  • 53 篇 anhui university...
  • 53 篇 college of mathe...
  • 53 篇 key laboratory o...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 hunan provincial...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 43 篇 graduate univers...
  • 41 篇 college of infor...
  • 39 篇 fujian provincia...

作者

  • 91 篇 zhongzhi shi
  • 86 篇 huang zhixiang
  • 85 篇 shi zhongzhi
  • 74 篇 li yingsong
  • 73 篇 shiguang shan
  • 73 篇 xilin chen
  • 69 篇 zhixiang huang
  • 62 篇 liu qun
  • 62 篇 huang qingming
  • 57 篇 yingsong li
  • 56 篇 xianliang wu
  • 51 篇 shi minjia
  • 43 篇 xu qianqian
  • 41 篇 wu xianliang
  • 39 篇 wu xian-liang
  • 39 篇 feng yang
  • 36 篇 he qing
  • 35 篇 luo bin
  • 33 篇 bin luo
  • 32 篇 wen gao

语言

  • 3,445 篇 英文
  • 200 篇 其他
  • 106 篇 中文
检索条件"机构=Key Laboratory of Intelligent Computing and Signal Processing"
3740 条 记 录,以下是591-600 订阅
排序:
Distilling Knowledge from Heterogeneous Architectures for Semantic Segmentation  39
Distilling Knowledge from Heterogeneous Architectures for Se...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Huang, Yanglin Hu, Kai Zhang, Yuan Chen, Zhineng Gao, Xieping Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University China School of Computer Science Fudan University China Key Laboratory for Artificial Intelligence and International Communication Hunan Normal University China
Current knowledge distillation (KD) methods for semantic segmentation focus on guiding the student to imitate the teacher’s knowledge within homogeneous architectures. However, these methods overlook the diverse know... 详细信息
来源: 评论
The Problems and Analysis of Artificial Intelligence Specialty Construction in Universities Under the Present Situation of Artificial Intelligence Development  8th
The Problems and Analysis of Artificial Intelligence Special...
收藏 引用
8th EAI International Conference on e-Learning, e-Education, and Online Training, eLEOT 2022
作者: Fu, Weina Liu, Shuai Institute of Information Science and Engineering Hunan Normal University Hunan Changsha410081 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Changsha410081 China
China’s independent innovation ability in the field of artificial intelligence is a key link to occupy the commanding heights of future science and technology and talent competition. The cultivation of artificial int... 详细信息
来源: 评论
Novelty Detection-Based Automated Anomaly Identification via Optimized Deep Generative Model  9th
Novelty Detection-Based Automated Anomaly Identification via...
收藏 引用
9th CCF Conference on Big Data, BigData 2021
作者: Liu, Lianye Liu, Jinping Wu, Juanjuan Zhou, Jiaming Cai, Meiling Hunan Meteorological Science Institute Hunan Changsha410007 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Hunan Changsha410081 China
Novelty detection (ND) is a crucial task in machine learning to identify anomalies in the test data in some respects different from the training data. As an anomaly detection method, novelty detection only uses normal... 详细信息
来源: 评论
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yinqi Chang, Hong Hou, Ruibing Shan, Shiguang Chen, Xilin Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative ta... 详细信息
来源: 评论
An Object Detection Algorithm with Multi-scale Context Information Based on YOLOv4  4
An Object Detection Algorithm with Multi-scale Context Infor...
收藏 引用
4th International Conference on Natural Language processing, ICNLP 2022
作者: Ma, Sugang An, Wen Yang, Xiaobao Hou, Zhiqiang Xi'an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an China Xi'an University of Posts and Telecommunications School of Computer Science and Technology Xi'an China Xi'an University of Posts and Telecommunications Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'an China
Most current object detection algorithms have the issue of missing objects due to occlusion. As the great difference of scale between occlusion objects and their integrity is affected, how to reduce the missing rate o... 详细信息
来源: 评论
An Analysis on the Training Mode of Master Students in Artificial Intelligence Field for Electronic Information Professional Degree—Take Hunan Normal University as an Example  8th
An Analysis on the Training Mode of Master Students in Artif...
收藏 引用
8th EAI International Conference on e-Learning, e-Education, and Online Training, eLEOT 2022
作者: Fu, Weina Liu, Shuai Institute of Information Science and Engineering Hunan Normal University Hunan Changsha410081 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Changsha410081 China
The ability of independent innovation in the field of artificial intelligence is a key element to occupy the commanding heights of future technology and talent competition in China. The cultivation of artificial intel... 详细信息
来源: 评论
Set pair three-way overlapping community discovery algorithm for weighted social internet of things
收藏 引用
Digital Communications and Networks 2023年 第1期9卷 3-13页
作者: Chunying Zhang Jing Ren Lu Liu Shouyue Liu Xiaoqi Li Liya Wang College of Science North China University of Science and TechnologyTangshanHebeiChina Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes North China University of Science and TechnologyTangshanHebeiChina Hebei Key Laboratory of Data Science and Application North China University of Science and TechnologyTangshanHebeiChina The Key Laboratory of Engineering Computing in Tangshan City North China University of Science and TechnologyTangshanHebeiChina Tangshan Intelligent Industry and Image Processing Technology Innovation Center North China University of Science and TechnologyTangshanHebeiChina
There are many problems in Social Internet of Things(IoTs),such as complex topology information,different degree of association between nodes and overlapping *** idea of set pair information grain computing and cluste... 详细信息
来源: 评论
EDGE: Unknown-aware Multi-label Learning by Energy Distribution Gap Expansion  39
EDGE: Unknown-aware Multi-label Learning by Energy Distribut...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Sun, Yuchen Xu, Qianqian Wang, Zitai Yang, Zhiyong He, Junwei Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China
Multi-label Out-Of-Distribution (OOD) detection aims to discriminate the OOD samples from the multi-label In-Distribution (ID) ones. Compared with its multiclass counterpart, it is crucial to model the joint informati...
来源: 评论
High-accurate and efficient numerical algorithms for the self-consistent field theory of liquid-crystalline polymers
收藏 引用
Computers & Mathematics with Applications 2025年 194卷 31-52页
作者: Zhijuan He Kai Jiang Liwei Tan Xin Wang Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Xiangtan Hunan 411105 China School of Mathematical Sciences Shanghai Jiao Tong University Shanghai 200240 China
Self-consistent field theory (SCFT) is one of the most widely-used frameworks in studying the equilibrium phase behavior of inhomogeneous polymers. For liquid-crystalline polymeric systems, the primary numerical chall...
来源: 评论
Unknown Type Streaming Feature Selection via Maximal Information Coefficient
Unknown Type Streaming Feature Selection via Maximal Informa...
收藏 引用
IEEE International Conference on Data Mining Workshops (ICDM Workshops)
作者: Peng Zhou Yunyun Zhang Yuanting Yan Shu Zhao Key Laboratory of Intelligent Computing and Signal Processing (the Ministry of Education of China) School of Computer Science and Technology Anhui University Hefei China
Feature selection aims to select an optimal minimal feature subset from the original datasets and has become an indispensable preprocessing component before data mining and machine learning, especially in the era of b... 详细信息
来源: 评论