咨询与建议

限定检索结果

文献类型

  • 940 篇 会议
  • 724 篇 期刊文献

馆藏范围

  • 1,664 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,067 篇 工学
    • 566 篇 计算机科学与技术...
    • 424 篇 软件工程
    • 310 篇 信息与通信工程
    • 257 篇 电子科学与技术(可...
    • 211 篇 电气工程
    • 137 篇 控制科学与工程
    • 80 篇 光学工程
    • 74 篇 机械工程
    • 71 篇 生物工程
    • 66 篇 仪器科学与技术
    • 64 篇 化学工程与技术
    • 50 篇 动力工程及工程热...
    • 49 篇 生物医学工程(可授...
    • 43 篇 材料科学与工程(可...
    • 31 篇 网络空间安全
    • 28 篇 力学(可授工学、理...
    • 26 篇 建筑学
    • 22 篇 土木工程
    • 18 篇 环境科学与工程(可...
  • 746 篇 理学
    • 488 篇 数学
    • 236 篇 物理学
    • 103 篇 统计学(可授理学、...
    • 92 篇 生物学
    • 81 篇 系统科学
    • 70 篇 化学
  • 183 篇 管理学
    • 114 篇 管理科学与工程(可...
    • 77 篇 图书情报与档案管...
    • 40 篇 工商管理
  • 26 篇 法学
    • 21 篇 社会学
  • 26 篇 医学
    • 21 篇 临床医学
  • 22 篇 农学
  • 14 篇 经济学
  • 9 篇 军事学
  • 5 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 35 篇 bandwidth
  • 35 篇 feature extracti...
  • 28 篇 simulation
  • 26 篇 signal processin...
  • 25 篇 semantics
  • 24 篇 image segmentati...
  • 24 篇 signal processin...
  • 23 篇 optimization
  • 18 篇 computational mo...
  • 18 篇 accuracy
  • 17 篇 wireless communi...
  • 17 篇 slot antennas
  • 17 篇 training
  • 16 篇 complex networks
  • 16 篇 deep learning
  • 16 篇 neural networks
  • 16 篇 interference
  • 15 篇 laboratories
  • 15 篇 resonant frequen...
  • 14 篇 metals

机构

  • 207 篇 key laboratory o...
  • 102 篇 key laboratory o...
  • 62 篇 key laboratory o...
  • 54 篇 anhui university...
  • 54 篇 school of comput...
  • 43 篇 college of infor...
  • 34 篇 key laboratory o...
  • 33 篇 key laboratory o...
  • 29 篇 college of compu...
  • 24 篇 fujian key labor...
  • 24 篇 key lab of intel...
  • 24 篇 anhui province k...
  • 24 篇 the key laborato...
  • 24 篇 anhui university
  • 23 篇 school of electr...
  • 23 篇 key lab of intel...
  • 23 篇 school of mathem...
  • 20 篇 engineering rese...
  • 17 篇 college of mathe...
  • 17 篇 key laboratory o...

作者

  • 80 篇 huang zhixiang
  • 77 篇 li yingsong
  • 59 篇 shi minjia
  • 58 篇 zhixiang huang
  • 56 篇 yingsong li
  • 40 篇 xianliang wu
  • 37 篇 wu xianliang
  • 30 篇 luo bin
  • 29 篇 zhang xingyi
  • 28 篇 jiang kai
  • 28 篇 solé patrick
  • 24 篇 li liping
  • 23 篇 zou juan
  • 23 篇 bin luo
  • 22 篇 tang jin
  • 21 篇 wu xian-liang
  • 21 篇 liping li
  • 21 篇 li xiaohui
  • 19 篇 minquan li
  • 19 篇 li chenglong

语言

  • 1,587 篇 英文
  • 44 篇 其他
  • 39 篇 中文
检索条件"机构=Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education"
1664 条 记 录,以下是51-60 订阅
排序:
MR-IDPSO: A Novel Algorithm for Large-Scale Dynamic Service Composition
收藏 引用
Tsinghua Science and Technology 2015年 第6期20卷 602-612页
作者: Yanping Zhang Zihui Jing Yiwen Zhang School of Computer Science and Technology Key Laboratory of Intelligent Computing and Signal ProcessingMinistry of EducationAnhui University
In the era of big data, data intensive applications have posed new challenges to the field of service composition. How to select the optimal composited service from thousands of functionally equivalent services but di... 详细信息
来源: 评论
Uncertainty-aware Superpoint Graph Transformer for Weakly Supervised 3D Semantic Segmentation
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年
作者: Fan, Yan Wang, Yu Zhu, Pengfei Hui, Le Xie, Jin Hu, Qinghua Tianjin University College of Intelligence and Computing Tianjin300350 China Ministry of Education of the People's Republic of China Engineering Research Center of City Intelligence and Digital Governance China Haihe Laboratory of Itai Tianjin China Northwestern Polytechnical University School of Electronics and Information Shaanxi Key Laboratory of Information Acquisition and Processing China Nanjing University of Science and Technology Pca Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Nanjing University State Key Laboratory for Novel Software Technology Nanjing China
Weakly supervised 3D semantic segmentation has successfully mitigated the labor-intensive and time-consuming task of annotating 3D point clouds. However, reliably utilizing the minimal point-wise annotations for unlab... 详细信息
来源: 评论
D-FGNAE: Decentralized Federated Graph Normalized AutoEncoder  19th
D-FGNAE: Decentralized Federated Graph Normalized AutoEncode...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Liang, Yuting Cai, Weixin Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Graphs widely exist in real-world, and Graph Neural Networks (GNNs) have exhibited exceptional efficacy in graph learning in diverse fields. With the strengthening of data privacy protection worldwide in recent years,... 详细信息
来源: 评论
Community-Aware Heterogeneous Graph Contrastive Learning  19th
Community-Aware Heterogeneous Graph Contrastive Learning
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Li, Xinying Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Recently, heterogeneous graph contrastive learning, which can mine supervision signals from the data, has attracted widespread attention. However, most existing methods employ random data augmentation strategies to co... 详细信息
来源: 评论
UGCM-LU: A Unified Stream and Batch Graph computing Model with Local Update for Community Detection  19th
UGCM-LU: A Unified Stream and Batch Graph Computing Model w...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Li, Hong Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Unified stream and batch computing (USBC) aims to incorporate stream and batch computation into a unified framework, thereby enabling the development of a one-stop solution for stream and batch data processing and enh... 详细信息
来源: 评论
Community Evolution Tracking Based on High-Order Neighbor Consideration and Node Change Identification  19th
Community Evolution Tracking Based on High-Order Neighbor C...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Zhang, Yunan Wang, Chaohui Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Community evolution tracking is widely used in complex network analysis, which analyzes and identifies how communities evolve over time based on dynamic community detection. However, the current incremental dynamic co... 详细信息
来源: 评论
High-precision end-to-end adaptive optics aided orbital angular momentum wireless communication with XFTC-Net
收藏 引用
Optics Letters 2025年 第10期50卷 3265-3268页
作者: Panpan Xu Huan Chang Fei Wang Ran Gao Dong Guo Lei Zhu Zhipei Li Sitong Zhou Qi Xu Jing Chen Xiangjun Xin School of Information and Electronics Beijing Institute of Technology (BIT) Beijing 100081 China National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing Beijing China School of Electronic Engineering Beijing University of Posts and Telecommunications (BUPT) Beijing 100876 China Key Laboratory of Computing Power Network and Information Security Ministry of Education Qilu University of Technology 250353 China
In this Letter, we demonstrate high-precision end-to-end adaptive optics (AO) technique based on the X-Shape Fusion Transformer-convolutional neural network (XFTC-Net) without an additional probe path to compensate fo... 详细信息
来源: 评论
Shape Recognition and Retrieval Based on Edit Distance and Dynamic Programming
收藏 引用
Tsinghua Science and Technology 2009年 第6期14卷 739-745页
作者: 潘鸿飞 梁栋 唐俊 王年 李薇 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Anhui University
An important aim in pattern recognition is to cluster the given shapes. This paper presents a shape recognition and retrieval algorithm. The algorithm first extracts the skeletal features using the medial axis transfo... 详细信息
来源: 评论
Simplicial complexes graph convolution networks with higher-order features learning for limited samples diagnosis
收藏 引用
Control Engineering Practice 2025年 162卷
作者: Xian-Jie Zhang Hai-Feng Zhang Kai Zhong Xiao-Ming Zhang The Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education School of Mathematical Science Anhui University Hefei 230601 Anhui China The Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei 230601 Anhui China
With the advancement of industrial automation, there is an increasing focus on research concerning limited fault samples. Although meta-learning and other methods can address this issue, they often necessitate the inc...
来源: 评论
Human-like conceptual representations emerge from language prediction
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ningyu Zhang, Qi Du, Chao Luo, Qiang Qiu, Xipeng Huang, Xuanjing Zhang, Menghan School of Computer Science Fudan University Shanghai China Institute of Modern Languages and Linguistics Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Shanghai China Research Institute of Intelligent Complex Systems Fudan University Shanghai China Shanghai Collaborative Innovation Center of Intelligent Visual Computing Shanghai China Ministry of Education Key Laboratory of Contemporary Anthropology Fudan University Shanghai China
People acquire concepts through rich physical and social experiences and use them to understand the world. In contrast, large language models (LLMs), trained exclusively through next-token prediction over language dat... 详细信息
来源: 评论