Since landslide is one of the most universal natural disasters in China, the study of regional landslide susceptibility evaluation is important to protect people's lives and property. This paper analyzes the geosp...
Since landslide is one of the most universal natural disasters in China, the study of regional landslide susceptibility evaluation is important to protect people's lives and property. This paper analyzes the geospatial characteristics of the Zigui-Badong section in the Three Gorges. By Pearson correlation analysis methodselects, nine impact factors of landslide susceptibility are extracted from the aspects of topography and geomorphology, geological environment, and hydrological conditions, used to establish the evaluation index system of landslide susceptibility. On the above data basis, the paper applies a support vector machine (SVM) model and an SVM model for gray wolf optimization (GWO) to the susceptibility evaluation of landslides, and product landslide susceptibility index maps according to the results. The research area is divided into four regions by jenks method on the map: high-risk, medium-risk, low-risk, and very low-risk areas. Applying the accuracy, confusion matrix, and receiver operating characteristic (ROC) curve to evaluate the model, The prediction accuracy of the GWO-SVM model and the SVM model is 88.55 % and 82.82 % respectively, the comparison proves that the GWO-SVM model is much more accurate, which can provide a reference for the study of regional landslide susceptibility.
Leaks in natural gas pipelines can cause very serious safety accidents, and timely detection and remedial action can greatly reduce the losses. In recent years, pipeline leak detection has received extensive studies. ...
Leaks in natural gas pipelines can cause very serious safety accidents, and timely detection and remedial action can greatly reduce the losses. In recent years, pipeline leak detection has received extensive studies. Most methods use pressure sensors or acoustic sensors to detect pipelines, but there are certain limitations on the usage scenarios and detection time delays. On this basis, this paper selects maglev vibration detector to detect the vibration signal of pipelines. The difficulty lies in that, sudden changes in vibration signals due to external disturbances, may lead to false alarms. Therefore, this paper proposes a pipeline leak detection method using Multivariate Gaussian Distribution based Kullback-Leibler Divergence (MGD-KLD) and on-delay timer to reduce false alarms during the detection process. In this paper, by constructing a simulated pipeline platform for leak experiments and applying the above method to process the experimental data, the false alarm rate of pipeline leak detection can be effectively reduced.
This paper addresses the problem of sliding-mode control for large-scale fuzzy descriptor systems subject to unknown uncertainties. First, a CMAC neural network is used to approximate the unknown uncertainties, and th...
详细信息
Landslide disasters are extremely destructive. Accurate identification of landslides plays an important role in disaster assessment, loss control and post-disaster reconstruction. This paper proposes a semantic segmen...
Landslide disasters are extremely destructive. Accurate identification of landslides plays an important role in disaster assessment, loss control and post-disaster reconstruction. This paper proposes a semantic segmentation landslide identification method based on improved U-Net. The deep convolution neural network and jump connection method is used for end-to-end semantic segmentation to achieve deep feature extraction and fusion of different receptive fields, thus enriching feature information. SENet modules are adopted to enhance the ability of the model to extract important features, so as to further improve the accuracy of model recognition. Extensive experiments show that our improved U-Net achieves better performance than the original algorithm on our landslide datasets. The results of Iou are improved by 4.12% which demonstrates our work is of great significance for the research of landslide area identification. Finally, the model is deployed to the web and applied to the geological hazard intelligent monitoring system to realize the landslide identification task.
As China's steel production accounts for an increasing share of the world's output, the intelligent transformation of the steel industry is becoming increasingly urgent. To address issues such as low levels of...
As China's steel production accounts for an increasing share of the world's output, the intelligent transformation of the steel industry is becoming increasingly urgent. To address issues such as low levels of mobile informationization in steel enterprises and the lack of an industry-specific mobile application platform, it is of great significance to establish a shared mobile application platform for the steel industry. In this paper, the requirements of the platform were analyzed, and the platform's functions were designed. The software design of the platform was then carried out, and the entire mobile application sharing platform was developed, effectively improving the production management efficiency of steel enterprises. The results indicate that the platform can effectively meet the needs of steel enterprises and has significant engineering significance.
This paper focuses on the bounded tracking control of general linear multi-agent systems(MASs), considering the effects of inevitable communication time-delays, measurement noises, and uncertain disturbances in practi...
详细信息
This paper focuses on the bounded tracking control of general linear multi-agent systems(MASs), considering the effects of inevitable communication time-delays, measurement noises, and uncertain disturbances in practical applications. Firstly, the bounded tracking control problem of uncertain MASs under multiplicative noises is transformed into the boundedness problem of stochastic differential delay equations. Then, the upper bound of agent tracking is calculated by means of linear variation, variation of constants formula and stochastic analysis theory, and sufficient conditions are given for the system to achieve the bounded tracking control.
Constant current (CC) based power distribution is widely used in the submarine power supply grid for its robustness against cable impedance and short circuit faults. An input-series-output-parallel (ISOP) modularized ...
Constant current (CC) based power distribution is widely used in the submarine power supply grid for its robustness against cable impedance and short circuit faults. An input-series-output-parallel (ISOP) modularized CC-to-CV converter is be used to provide constant voltage (CV) for the submarine instruments. In this paper, an imbalance control with stratified voltage is proposed for the modularized CC-to-CV converter by switching modules to adjust the power. The power of each power module is decided by the output voltage realizing auto and seamless module switching. Specially, only one module is regulated to adjust the power, other modules are out of control working either in full power or in standby, improving the efficiency for light power conditions. The modeling and analysis of the modularized CC-to-CV converter is also presented, as well as the proposed the control method. Finally, a prototype is built to verify the proposed method.
Ground Penetrating Radar (GPR) features are vital for accurately predicting the formation environment in the tunnel engineering. In this paper, a novel intelligent method for extracting the multi-domain (time domain, ...
Ground Penetrating Radar (GPR) features are vital for accurately predicting the formation environment in the tunnel engineering. In this paper, a novel intelligent method for extracting the multi-domain (time domain, time frequency domain, and spatial domain) features of ground penetrating radar data is proposed. Firstly, the GPR exploration data is read to obtain the relative amplitude matrix. Secondly, multi-domain features are obtained using the following methods. The relative amplitude matrix of GPR is averaged by rows to obtain the time domain feature called the average relative amplitude(ARA). The S-transform is used to extract the time frequency domain feature called the average maximum weight frequency(AMWF) of the electromagnetic waves. And the events of the GPR images are highlighted by using Gaussian filtering and edge detection, and the spatial domain feature called the maximum event length(M EL) is obtained through contour detection. Finally, the three extracted multi-domain features are stored in the GPR feature database. Compared simulation results verify the effectiveness of the proposed method.
This paper explores the finite-time synchronization of a class of discrete-time nonlinear singularly perturbed complex networks using a dynamic event-triggered mechanism (DETM). The DETM is designed to optimize packet...
This paper explores the finite-time synchronization of a class of discrete-time nonlinear singularly perturbed complex networks using a dynamic event-triggered mechanism (DETM). The DETM is designed to optimize packet transmission, aiming to conserve network resources. By constructing a Lyapunov function considering singularly perturbed parameters (SPPs) and DETM information, a sufficient condition for the dynamics of synchronization error system to be finite-time stable is given. The parameters of the synchronization controller can be determined by solving a set of matrix inequalities. The effectiveness of the proposed controller is demonstrated through a numerical example.
A fault diagnosis method based on Discrete Hidden Markov Models is proposed in this paper to identify the fault causing alarm flood sequences. The proposed method consists of the following steps: First, the alarm floo...
A fault diagnosis method based on Discrete Hidden Markov Models is proposed in this paper to identify the fault causing alarm flood sequences. The proposed method consists of the following steps: First, the alarm flood data is pre-processed to ensure that all sequences are of uniform length, and a separate Discrete Hidden Markov model is trained for each fault to capture the relationship between the fault and the alarm sequences. Second, given an observation sequence, the log-likelihood probability values under different Discrete Hidden Markov models are calculated and the maximum probability is selected to determine the type of corresponding fault. Last, the feasibility of the proposed method is verified by simulation data obtained from a public industrial model. The results show that the method can effectively identify the faults that trigger alarm floods.
暂无评论