咨询与建议

限定检索结果

文献类型

  • 1,771 篇 会议
  • 537 篇 期刊文献

馆藏范围

  • 2,308 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,519 篇 工学
    • 630 篇 软件工程
    • 578 篇 控制科学与工程
    • 556 篇 计算机科学与技术...
    • 438 篇 机械工程
    • 211 篇 电气工程
    • 178 篇 仪器科学与技术
    • 174 篇 电子科学与技术(可...
    • 129 篇 信息与通信工程
    • 74 篇 生物工程
    • 68 篇 交通运输工程
    • 60 篇 化学工程与技术
    • 52 篇 动力工程及工程热...
    • 51 篇 生物医学工程(可授...
    • 44 篇 光学工程
    • 42 篇 冶金工程
    • 37 篇 材料科学与工程(可...
    • 36 篇 土木工程
    • 35 篇 航空宇航科学与技...
    • 34 篇 安全科学与工程
    • 33 篇 力学(可授工学、理...
  • 661 篇 理学
    • 371 篇 数学
    • 237 篇 系统科学
    • 124 篇 物理学
    • 107 篇 统计学(可授理学、...
    • 76 篇 生物学
    • 42 篇 化学
  • 310 篇 管理学
    • 270 篇 管理科学与工程(可...
    • 53 篇 工商管理
    • 39 篇 图书情报与档案管...
  • 42 篇 医学
    • 35 篇 临床医学
  • 29 篇 经济学
  • 21 篇 法学
  • 15 篇 教育学
  • 13 篇 艺术学
  • 11 篇 农学
  • 7 篇 军事学
  • 5 篇 文学
  • 1 篇 历史学

主题

  • 62 篇 feature extracti...
  • 58 篇 training
  • 46 篇 mathematical mod...
  • 45 篇 optimization
  • 43 篇 neural networks
  • 43 篇 predictive model...
  • 43 篇 control systems
  • 42 篇 automation
  • 42 篇 stability analys...
  • 35 篇 deep learning
  • 35 篇 trajectory
  • 31 篇 simulation
  • 31 篇 accuracy
  • 30 篇 computational mo...
  • 30 篇 state estimation
  • 29 篇 data models
  • 29 篇 adaptation model...
  • 28 篇 delays
  • 26 篇 multi-agent syst...
  • 25 篇 reinforcement le...

机构

  • 876 篇 hubei key labora...
  • 767 篇 school of automa...
  • 387 篇 engineering rese...
  • 171 篇 school of automa...
  • 79 篇 qingdao academy ...
  • 75 篇 key laboratory o...
  • 56 篇 state key labora...
  • 54 篇 key laboratory o...
  • 50 篇 state key labora...
  • 47 篇 the state key la...
  • 46 篇 school of artifi...
  • 43 篇 state key labora...
  • 43 篇 ministry of educ...
  • 43 篇 state key labora...
  • 42 篇 school of engine...
  • 41 篇 school of automa...
  • 40 篇 the state key la...
  • 38 篇 hubei key labora...
  • 38 篇 key laboratory o...
  • 36 篇 state key labora...

作者

  • 154 篇 min wu
  • 80 篇 weihua cao
  • 74 篇 fei-yue wang
  • 69 篇 xin chen
  • 68 篇 jinhua she
  • 60 篇 wu min
  • 59 篇 gang xiong
  • 50 篇 yuanqing xia
  • 49 篇 luefeng chen
  • 46 篇 chen jie
  • 43 篇 yong he
  • 42 篇 wang fei-yue
  • 40 篇 junzheng wang
  • 39 篇 jie chen
  • 38 篇 xiangdong liu
  • 38 篇 cao weihua
  • 37 篇 chuan-ke zhang
  • 37 篇 chengda lu
  • 34 篇 liping yan
  • 32 篇 xiong gang

语言

  • 2,113 篇 英文
  • 171 篇 其他
  • 29 篇 中文
  • 1 篇 法文
检索条件"机构=Key Laboratory of Intelligent Control and Design of Complex Systems"
2308 条 记 录,以下是1511-1520 订阅
排序:
A novel augmented Lyapunov functional for the stability analysis of delayed neural networks
A novel augmented Lyapunov functional for the stability anal...
收藏 引用
Chinese control Conference
作者: Fei Long Leichao Pang Chuan-Ke Zhang Yong He Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China
This paper investigates the stability of neural networks with a time-varying delay. Based on the good effectiveness of the augmented Lyapunov-Krasovskii functional (LKF), some useful integral vectors are summarized an... 详细信息
来源: 评论
A Demand Analysis Method Based on TAKAGI-SUGENO Fuzzy Model for Drinking Service
A Demand Analysis Method Based on TAKAGI-SUGENO Fuzzy Model ...
收藏 引用
Chinese control Conference
作者: Man Hao Weihua Cao Zhentao Liu Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China
A demand analysis method based on TAKAGI-SUGENO (T-S) fuzzy model for drinking service is proposed to provide corresponding services according to users' emotions and intentions in human-robot interaction, in which... 详细信息
来源: 评论
Observer-Based Tracking control for Suppressing Stick-Slip Vibration of Drillstring System
Observer-Based Tracking Control for Suppressing Stick-Slip V...
收藏 引用
Chinese control Conference (CCC)
作者: Jun Cheng Min Wu Luefeng Chen Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China
A control method is proposed to suppress stick-slip vibration of drillstring system based on tracking control with zero steady-state error and state observer in this paper. A multiple degree-of-freedom (DOF) model of ... 详细信息
来源: 评论
Dense Depth Estimation with Absolute Scale
Dense Depth Estimation with Absolute Scale
收藏 引用
Chinese control Conference (CCC)
作者: Xing Jin Zhiwen Yao Jingjing Zhang Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China
Considering the difficulties in estimating depth from single image, in this paper, we propose a method to obtain the absolute scale depth map by combining the convolution neural network and depth filter. We compute re... 详细信息
来源: 评论
The transient electromagnetic inversion based on the simplex-simulated annealing algorithm
The transient electromagnetic inversion based on the simplex...
收藏 引用
Chinese control Conference (CCC)
作者: Guangjun Wang Caifeng Xu Gang Liu Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China
In order to avoid the linear inversion method falling into local minima and slow convergence speed of the global optimization inversion method, the article proposed the simplex-simulated annealing algorithm for transi... 详细信息
来源: 评论
Research on Handwritten Alphabet Recognition System Based on Extreme Learning Machine
Research on Handwritten Alphabet Recognition System Based on...
收藏 引用
Chinese control Conference
作者: Junlei Song Qi Liu Shengnan Tian Yi Wei Fang Jin Wenqin Mo Kaifeng Dong Hubei key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan China
Aiming at the problems of slow recognition, low efficiency and degree of automation in handwritten letter recognition system at present, a handwritten letter recognition system based on extreme learning machine is des...
来源: 评论
Training and Testing Object Detectors With Virtual Images
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2018年 第2期5卷 539-546页
作者: Yonglin Tian Xuan Li Kunfeng Wang Fei-Yue Wang Department of Automation University of Science and Technology of China Hefei 230027 China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijirtg 100190 China School of Automation Beijing Institute of Technology Beijing 100081. China Qingdao Academy of Intelligent Industries Qingdao 266000 China Research Center for Computational Experiments and Parallel Systems Technology National University of Defense Technology Changsha 410073 China IEEE
In the area of computer vision, deep learning has produced a variety of state-of-the-art models that rely on massive labeled data. However, collecting and annotating images from the real world is too demanding in term... 详细信息
来源: 评论
Distributed circle formation control over directed networks with communication constraints ⁎
收藏 引用
IFAC-PapersOnLine 2019年 第3期52卷 108-113页
作者: Peng Xu Jiayan Wen Chen Wang Guangming Xie College of Electrical and Information Engineering Guangxi University of Science and Technology Liuzhou 545006 China National Engineering Research Center for Software Engineering Peking University Beijing 100871 China The State Key Laboratory of Turbulence and Complex Systems Intelligent Biomimetic Design Lab College of Engineering Peking University Beijing100871 China
This paper investigates distributed circle formation problems of multi-agent systems (MAS) subject to limited information communication under a class of weight-unbalanced directed graphs, in which the communication to... 详细信息
来源: 评论
A Two-level Adaptive Target Recognition and Tracking Method Based on Vision for Multi-robot System
A Two-level Adaptive Target Recognition and Tracking Method ...
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Liang Ren Zhiqiang Cao Min Tan Peng Zhao Xuechao Chen State Key Laboratory of Management and Control for Complex Systems University of Chinese Academy of Sciences Beijing China The 21st Research Institute of China Electronics Technology Group Corporation Shanghai China Beijing Advanced Innovation Center for Intelligent Robots and Systems BIT Beijing China
The vision-based target recognition and tracking have received much attention in the field of robotics. Existing methods mainly focus on the vision perception of individual robot with a single view, however, the perfo...
来源: 评论
Adaboost-kNN for dynamic emotion recognition  8
Adaboost-kNN for dynamic emotion recognition
收藏 引用
8th International Symposium on Computational Intelligence and Industrial Applications and 12th China-Japan International Workshop on Information Technology and control Applications, ISCIIA and ITCA 2018
作者: Li, Min Su, Wanjuan Chen, Luefeng Wu, Min Hirota, Kaoru School of Automation China University of Geosciences Wuhan430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan430074 China Tokyo Institute of Technology Yokohama226-8502 Japan
— K-nearest Neighbor based adaptive boosting (AdaBoost-KNN) is proposed for emotion understanding in human-robot interaction (HRI), where the real-time dynamic emotion is recognized according to facial expression. It... 详细信息
来源: 评论