咨询与建议

限定检索结果

文献类型

  • 1,300 篇 会议
  • 993 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 2,295 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,484 篇 工学
    • 1,047 篇 计算机科学与技术...
    • 904 篇 软件工程
    • 328 篇 信息与通信工程
    • 178 篇 控制科学与工程
    • 161 篇 生物工程
    • 149 篇 电气工程
    • 145 篇 机械工程
    • 114 篇 电子科学与技术(可...
    • 102 篇 生物医学工程(可授...
    • 99 篇 光学工程
    • 77 篇 化学工程与技术
    • 62 篇 仪器科学与技术
    • 48 篇 材料科学与工程(可...
    • 47 篇 动力工程及工程热...
    • 46 篇 交通运输工程
    • 34 篇 网络空间安全
    • 28 篇 建筑学
  • 795 篇 理学
    • 452 篇 数学
    • 212 篇 物理学
    • 191 篇 生物学
    • 140 篇 统计学(可授理学、...
    • 72 篇 化学
    • 55 篇 系统科学
  • 432 篇 管理学
    • 242 篇 图书情报与档案管...
    • 202 篇 管理科学与工程(可...
    • 65 篇 工商管理
  • 80 篇 医学
    • 69 篇 临床医学
    • 57 篇 基础医学(可授医学...
    • 39 篇 药学(可授医学、理...
  • 40 篇 法学
    • 30 篇 社会学
  • 35 篇 农学
  • 25 篇 经济学
  • 13 篇 教育学
  • 10 篇 艺术学
  • 9 篇 哲学
  • 8 篇 文学
  • 5 篇 军事学

主题

  • 108 篇 feature extracti...
  • 77 篇 semantics
  • 68 篇 training
  • 66 篇 information proc...
  • 61 篇 laboratories
  • 52 篇 face recognition
  • 50 篇 computers
  • 43 篇 computational mo...
  • 41 篇 visualization
  • 40 篇 deep learning
  • 38 篇 humans
  • 36 篇 robustness
  • 35 篇 data mining
  • 34 篇 machine learning
  • 33 篇 predictive model...
  • 32 篇 accuracy
  • 30 篇 image segmentati...
  • 30 篇 convolution
  • 30 篇 clustering algor...
  • 29 篇 object detection

机构

  • 434 篇 key laboratory o...
  • 218 篇 university of ch...
  • 83 篇 key laboratory o...
  • 62 篇 peng cheng labor...
  • 48 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 44 篇 key laboratory o...
  • 43 篇 graduate univers...
  • 42 篇 school of comput...
  • 39 篇 chinese academy ...
  • 32 篇 school of comput...
  • 32 篇 school of inform...
  • 30 篇 graduate univers...
  • 28 篇 school of cyber ...
  • 27 篇 national enginee...
  • 26 篇 key laboratory o...
  • 26 篇 school of comput...
  • 26 篇 college of infor...
  • 24 篇 faculty of infor...
  • 24 篇 beijing key labo...

作者

  • 98 篇 zhongzhi shi
  • 93 篇 shi zhongzhi
  • 74 篇 xilin chen
  • 72 篇 shiguang shan
  • 62 篇 liu qun
  • 60 篇 huang qingming
  • 41 篇 feng yang
  • 40 篇 xu qianqian
  • 36 篇 he qing
  • 32 篇 wen gao
  • 31 篇 qing he
  • 28 篇 liu yang
  • 28 篇 li hua
  • 28 篇 zhuang fuzhen
  • 27 篇 yuefei sui
  • 26 篇 fuji ren
  • 25 篇 yang zhiyong
  • 25 篇 cao xiaochun
  • 24 篇 ding shifei
  • 22 篇 shan shiguang

语言

  • 2,153 篇 英文
  • 90 篇 其他
  • 54 篇 中文
检索条件"机构=Key Laboratory of Intelligent Information ProcessingInstitute of Computing Technology"
2295 条 记 录,以下是51-60 订阅
排序:
Monotonicity and nonmonotonicity in L3-valued propositional logic
收藏 引用
Frontiers of Computer Science 2022年 第4期16卷 33-43页
作者: Wei Li Yuefei Sui State Key Laboratory of Software Development Environment Beihang UniversityBeijing100083China Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing100190China School of Computer Science and Technology University of Chinese Academy of SciencesBeijing100049China
A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L_(3)-valued propositional logic, a multisequent is a triple Δ∣Θ∣Γ, which i... 详细信息
来源: 评论
How to Train Your Neural Network for Molecular Structure Generation from Mass Spectra?
How to Train Your Neural Network for Molecular Structure Gen...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Zhao, Kai Liu, Yanmin Dian, Longyang Sun, Shiwei Cui, Xuefeng Shandong University School of Computer Science and Technology Qingdao China Shandong University State Key Laboratory of Microbial Technology Qingdao China Chinese Academy of Sciences Key Lab of Intelligent Information Processing Institute of Computing Technology Beijing China
Mass spectrometry serves as a pivotal tool for the analysis of small molecules through an examination of their mass-to-charge ratios. Recent advancements in deep learning have markedly enhanced the analysis of mass sp... 详细信息
来源: 评论
K-MEANS CLUSTERING BASED SPARSE CROSS-ENTROPY MINIMIZATION ALGORITHM FOR DOA ESTIMATION
K-MEANS CLUSTERING BASED SPARSE CROSS-ENTROPY MINIMIZATION A...
收藏 引用
IET International Radar Conference 2023, IRC 2023
作者: Guo, Qiang Jiang, Hanyu Xiang, Jianhong Zhong, Yu College of Information and Communication Harbin Engineering University Harbin China Key Laboratory of Advanced Ship Communication and Information Technology Harbin Engineering University Harbin China Agile and Intelligent Computing Key Laboratory Chengdu China
Aiming at the problem that traditional greedy class compressed sensing algorithms are influenced by noise in the estimation of direction of arrival (DOA), this paper proposes the K-Means Clustering based Sparse Cross-... 详细信息
来源: 评论
Simulation analysis of erosion characteristics of slurry pipelines based on CFD-DDPM pipeline parameters  43
Simulation analysis of erosion characteristics of slurry pip...
收藏 引用
43rd Chinese Control Conference, CCC 2024
作者: Yuan, Haoran Wu, Jiande Xiong, Xin Yunnan University Yunnan Key Laboratory of Intelligent Systems and Computing Yunnan Kunming650500 China Kunming University of Science and Technology Faculty of Information Engineering and Automation Yunnan Kunming650500 China Kunming University of Science and Technology Yunnan Key Laboratory of Intelligent Control and Application Yunnan Kunming650500 China
In order to explore the impact of pipe diameter, bend-diameter ratio and bend angle on the erosion of slurry pipe, a numerical simulation method approach grounded in Computational Fluid Dynamics - Dense Discrete Phase... 详细信息
来源: 评论
Leveraging Catastrophic Forgetting to Develop Safe Diffusion Models against Malicious Finetuning  38
Leveraging Catastrophic Forgetting to Develop Safe Diffusion...
收藏 引用
38th Conference on Neural information Processing Systems, NeurIPS 2024
作者: Pan, Jiadong Gao, Hongcheng Wu, Zongyu Hu, Taihang Su, Li Huang, Qingming Li, Liang Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS China University of Chinese Academy of Sciences China The Pennsylvania State University United States Nankai University China
Diffusion models (DMs) have demonstrated remarkable proficiency in producing images based on textual prompts. Numerous methods have been proposed to ensure these models generate safe images. Early methods attempt to i...
来源: 评论
A prompt-based approach to adversarial example generation and robustness enhancement
收藏 引用
Frontiers of Computer Science 2024年 第4期18卷 85-96页
作者: Yuting YANG Pei HUANG Juan CAO Jintao LI Yun LIN Feifei MA Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China School of Computer Science and Technology University of Chinese Academy of SciencesBeijing 100049China Department of Computer Science Stanford UniversityCA 94305USA School of Computing National University of SingaporeSingapore 119077Singapore Laboratory of Parallel Software and Computational Science Institute of SoftwareChinese Academy of SciencesBeijing 100190China
Recent years have seen the wide application of natural language processing(NLP)models in crucial areas such as finance,medical treatment,and news media,raising concerns about the model robustness and *** find that pro... 详细信息
来源: 评论
Collaborative Pushing and Grasping in Complex Scenarios via a Generator-Evaluator Network with Multiple Action Primitives  17th
Collaborative Pushing and Grasping in Complex Scenarios vi...
收藏 引用
17th International Conference on intelligent Robotics and Applications, ICIRA 2024
作者: Zuo, Guoyu Wang, Zihao Luo, Yongkang Yu, Shuangyue Zhao, Min School of Information Science and Technology Beijing University of Technology Beijing100124 China Beijing Key Laboratory of Computing Intelligence and Intelligent Systems Beijing100124 China The State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China
As robotic technologies advance, robotic arm manipulation tasks in complex environments become increasingly important. This paper presents a new collaborative pushing and grasping strategy to address two major challen... 详细信息
来源: 评论
Task Separation and Knowledge Sharing for Class Incremental Learning  5
Task Separation and Knowledge Sharing for Class Incremental ...
收藏 引用
5th International Conference on intelligent computing and Human-Computer Interaction, ICHCI 2024
作者: Zhang, Jiali Qiao, Xiaoyan School of Computer Science and Technology Shandong Technology and Business University Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Immersion Technology and Evaluation Shandong Engineering Research Center Shandong Yantai China School of Mathematics and Information Science Shandong Technology and Business University Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Immersion Technology and Evaluation Shandong Engineering Research Center Shandong Yantai China
Methods based on dynamically expanding architectures can effectively mitigate catastrophic forgetting in class incremental learning (CIL), but they often overlook information sharing and integration between subnetwork... 详细信息
来源: 评论
Vision based intelligent traffic light management system using Faster R‐CNN
收藏 引用
CAAI Transactions on Intelligence technology 2024年 第4期9卷 932-947页
作者: Syed Konain Abbas Muhammad Usman Ghani Khan Jia Zhu Raheem Sarwar Naif R.Aljohani Ibrahim A.Hameed Muhammad Umair Hassan Department of Computer Science and Engineering University of Engineering and TechnologyLahorePakistan Zhejiang Key Laboratory of Intelligent Education Technology and Application Zhejiang Normal UniversityJinhuaChina OTHEM Manchester Metropolitan UniversityManchesterUK Faculty of Computing and Information Technology King Abdulaziz UniversityJeddahSaudi Arabia Department of ICT and Natural Sciences Norwegian University of Science and Technology(NTNU)ÅlesundNorway
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf... 详细信息
来源: 评论
A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第9期33卷 4861-4875页
作者: Yang, Shangshang Tian, Ye He, Cheng Zhang, Xingyi Tan, Kay Chen Jin, Yaochu Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei China Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Southern University of Science and Technology Shenzhen China Department of Computing The Hong Kong Polytechnic University Hong Kong SAR Department of Computer Science University of Surrey Guildford U.K
It has been widely recognized that the efficient training of neural networks (NNs) is crucial to classification performance. While a series of gradient-based approaches have been extensively developed, they are critic... 详细信息
来源: 评论