咨询与建议

限定检索结果

文献类型

  • 462 篇 会议
  • 389 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 852 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 597 篇 工学
    • 377 篇 计算机科学与技术...
    • 317 篇 软件工程
    • 193 篇 信息与通信工程
    • 113 篇 控制科学与工程
    • 79 篇 生物工程
    • 77 篇 仪器科学与技术
    • 63 篇 电气工程
    • 58 篇 光学工程
    • 54 篇 电子科学与技术(可...
    • 49 篇 测绘科学与技术
    • 42 篇 环境科学与工程(可...
    • 39 篇 机械工程
    • 22 篇 生物医学工程(可授...
    • 19 篇 航空宇航科学与技...
    • 16 篇 化学工程与技术
    • 14 篇 土木工程
  • 338 篇 理学
    • 218 篇 数学
    • 90 篇 生物学
    • 71 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 31 篇 系统科学
    • 17 篇 化学
    • 13 篇 地球物理学
  • 156 篇 管理学
    • 98 篇 图书情报与档案管...
    • 65 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 43 篇 农学
    • 41 篇 农业资源与环境
  • 26 篇 医学
    • 23 篇 基础医学(可授医学...
    • 16 篇 临床医学
  • 17 篇 法学
    • 16 篇 社会学
  • 6 篇 经济学
  • 6 篇 教育学
  • 4 篇 军事学
  • 2 篇 文学

主题

  • 68 篇 feature extracti...
  • 47 篇 training
  • 43 篇 synthetic apertu...
  • 35 篇 optimization
  • 34 篇 remote sensing
  • 33 篇 clustering algor...
  • 32 篇 algorithm design...
  • 31 篇 image segmentati...
  • 29 篇 semantics
  • 26 篇 image classifica...
  • 24 篇 evolutionary com...
  • 20 篇 deep learning
  • 20 篇 convolution
  • 20 篇 multiobjective o...
  • 18 篇 object detection
  • 18 篇 visualization
  • 17 篇 image reconstruc...
  • 16 篇 image edge detec...
  • 16 篇 image coding
  • 15 篇 support vector m...

机构

  • 64 篇 key laboratory o...
  • 63 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 28 篇 pca lab key lab ...
  • 24 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 20 篇 school of comput...
  • 19 篇 key laboratory o...
  • 18 篇 school of comput...
  • 17 篇 pca lab key lab ...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...
  • 11 篇 jiangsu key labo...
  • 11 篇 pca lab key lab ...
  • 9 篇 jiangsu key lab ...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 8 篇 institute of int...
  • 7 篇 key laboratory o...

作者

  • 167 篇 jiao licheng
  • 129 篇 licheng jiao
  • 75 篇 yang jian
  • 70 篇 liu fang
  • 45 篇 xiangrong zhang
  • 41 篇 gong maoguo
  • 37 篇 jian yang
  • 35 篇 liu xu
  • 35 篇 yang shuyuan
  • 32 篇 maoguo gong
  • 31 篇 ma wenping
  • 30 篇 li lingling
  • 28 篇 jiao li-cheng
  • 28 篇 shuang wang
  • 25 篇 shang fanhua
  • 24 篇 biao hou
  • 24 篇 gong chen
  • 23 篇 fang liu
  • 22 篇 yangyang li
  • 22 篇 xie jin

语言

  • 783 篇 英文
  • 44 篇 中文
  • 26 篇 其他
  • 1 篇 法文
检索条件"机构=Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education"
852 条 记 录,以下是191-200 订阅
排序:
SHaRPose: Sparse High-Resolution Representation for Human Pose Estimation
arXiv
收藏 引用
arXiv 2023年
作者: An, Xiaoqi Zhao, Lin Gong, Chen Wang, Nannan Wang, Di Yang, Jian PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology China State Key Laboratory of Integrated Services Networks Xidian University China
High-resolution representation is essential for achieving good performance in human pose estimation models. To obtain such features, existing works utilize high-resolution input images or fine-grained image tokens. Ho... 详细信息
来源: 评论
Sample-Level Improved Cross-Source Contrastive Learning for PAN and MS Joint Classification
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2025年 63卷
作者: Tian, Pengyu Zhu, Hao Hou, Biao Chen, Lu Guo, Pute Chen, Kefan Jiao, Licheng Xidian University Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education School of Artificial Intelligence Xi’an710071 China
In recent years, the number and ways of acquiring panchromatic images (PAN) and multispectral images (MS) have increased, and manual labeling costs have also increased. Processing these data efficiently has become a c... 详细信息
来源: 评论
Autoencoder-Based Latent Block-Diagonal Representation for Subspace Clustering
收藏 引用
IEEE Transactions on Cybernetics 2022年 第6期52卷 5408-5418页
作者: Xu, Yesong Chen, Shuo Li, Jun Han, Zongyan Yang, Jian Nanjing University of Science and Technology PCA Laboratory Key Lab. of Intelligent Percept. and Syst. for High-Dimensional Information of Ministry of Education Nanjing210094 China Nanjing University of Science and Technology Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing210094 China RIKEN Center for Advanced Intelligence Project Tokyo103-0027 Japan Nanjing University of Science and Technology School of Computer Science and Engineering Nanjing210094 China
Block-diagonal representation (BDR) is an effective subspace clustering method. The existing BDR methods usually obtain a self-expression coefficient matrix from the original features by a shallow linear model. Howeve... 详细信息
来源: 评论
Hyperspectral image Classification With Contrastive Graph Convolutional Network
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Wentao Wan, Sheng Li, Guangyu Yang, Jian Gong, Chen The PCA Laboratory The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education The Jiangsu Key Laboratory of Image and Video Understanding for Social Security The School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China
Recently, Graph Convolutional Network (GCN) has been widely used in Hyperspectral image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus ... 详细信息
来源: 评论
RSBNet: One-shot neural architecture search for a backbone network in remote sensing image recognition
arXiv
收藏 引用
arXiv 2021年
作者: Peng, Cheng Li, Yangyang Shang, Ronghua Jiao, Licheng Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education School of Artificial Intelligence Xidian University Xi'an710071 China
Recently, a massive number of deep learning based approaches have been successfully applied to various remote sensing image (RSI) recognition tasks. However, most existing advances of deep learning methods in the RSI ... 详细信息
来源: 评论
A Dual Residual Network with Channel Attention for image Restoration  16th
A Dual Residual Network with Channel Attention for Image Res...
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Nie, Shichao Ma, Chengconghui Chen, Dafan Yin, Shuting Wang, Haoran Jiao, LiCheng Liu, Fang Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education International Research Center for Intelligent Perception and Computation Joint International Research Laboratory of Intelligent Perception and Computation School of Artificial Intelligence Xidian University Xi’an Shaanxi710071 China
Deep learning models have achieved significant performance on image restoration task. However, restoring the images with complicated and combined degradation types still remains a challenge. For this purpose, we propo... 详细信息
来源: 评论
Adaptive and Background-Aware Match for Class-Agnostic Counting
SSRN
收藏 引用
SSRN 2023年
作者: Gong, Shenjian Yang, Jian Zhang, Shanshan PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Nankai University China
Class-agnostic counting (CAC) aims to count object instances in an image by simply specifying a few exemplar boxes of interest. The key challenge for CAC is how to tailor a desirable interaction between exemplar and q... 详细信息
来源: 评论
GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yang Chen, Ji Li, Fu Fu, Boxun Wu, Hao Ji, Youshuo Zhou, Yijin Niu, Yi Shi, Guangming Zheng, Wenming The Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education The School of Artificial Intelligence Xidian University Xi’an710071 China School of Biological Sciences and Medical Engineering Southeast University Jiangsu Nanjing210096 China
Previous electroencephalogram (EEG) emotion recognition relies on single-task learning, which may lead to overfitting and learned emotion features lacking generalization. In this paper, a graph-based multi-task self-s... 详细信息
来源: 评论
SBPF: Sensitiveness Based Pruning Framework For Convolutional Neural Network On image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Lu, Yiheng Gong, Maoguo Zhao, Wei Feng, Kai-Yuan Li, Hao State Key Laboratory of Integrated Services Networks School of Computer Science and Technology Xidian University Xi’an710071 China Key Laboratory of Intelligent Perception and Image Understanding School of Electronic Engineering Ministry of Education Xidian University Xi’an710071 China
Pruning techniques are used comprehensively to compress convolutional neural networks (CNNs) on image classification. However, the majority of pruning methods require a well pre-trained model to provide useful support... 详细信息
来源: 评论
Lens-to-Lens Bokeh Effect Transformation. NTIRE 2023 Challenge Report
Lens-to-Lens Bokeh Effect Transformation. NTIRE 2023 Challen...
收藏 引用
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Conde, Marcos V. Kolmet, Manuel Seizinger, Tim Bishop, Tom E. Timofte, Radu Kong, Xiangyu Zhang, Dafeng Wu, Jinlong Wang, Fan Peng, Juewen Pan, Zhiyu Liu, Chengxin Luo, Xianrui Sun, Huiqiang Shen, Liao Cao, Zhiguo Xian, Ke Liu, Chaowei Chen, Zigeng Yang, Xingyi Liu, Songhua Jing, Yongcheng Mi, Michael Bi Wang, Xinchao Yang, Zhihao Lian, Wenyi Lai, Siyuan Zhang, Haichuan Hoang, Trung Yazdani, Amirsaeed Monga, Vishal Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Zhao, Yuxuan Chen, Baoliang Xu, Yiqing Niu, Jixiang Computer Vision Lab CAIDAS IFI University of Würzburg Germany Glass Imaging Inc. China Huazhong University of Science and Technology China Nanyang Technological University Singapore National University of Singapore Singapore University of Sydney Australia Huawei Uppsala University Sweden Department of Electrical Engineering Pennsylvania State University United States Department of Information Technology Uppsala University Sweden Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education Xidian University Xi'an China North China University of Technology China
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge. Recent advancements of mobile photography a... 详细信息
来源: 评论