咨询与建议

限定检索结果

文献类型

  • 2,259 篇 会议
  • 1,450 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 3,714 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,327 篇 工学
    • 1,485 篇 计算机科学与技术...
    • 1,221 篇 软件工程
    • 588 篇 信息与通信工程
    • 378 篇 电子科学与技术(可...
    • 310 篇 电气工程
    • 280 篇 控制科学与工程
    • 189 篇 生物工程
    • 178 篇 机械工程
    • 173 篇 光学工程
    • 126 篇 生物医学工程(可授...
    • 121 篇 化学工程与技术
    • 113 篇 仪器科学与技术
    • 83 篇 动力工程及工程热...
    • 69 篇 材料科学与工程(可...
    • 55 篇 网络空间安全
    • 51 篇 建筑学
    • 45 篇 土木工程
  • 1,411 篇 理学
    • 905 篇 数学
    • 411 篇 物理学
    • 226 篇 生物学
    • 216 篇 统计学(可授理学、...
    • 131 篇 化学
    • 123 篇 系统科学
  • 562 篇 管理学
    • 297 篇 管理科学与工程(可...
    • 282 篇 图书情报与档案管...
    • 99 篇 工商管理
  • 93 篇 医学
    • 77 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 59 篇 法学
    • 46 篇 社会学
  • 48 篇 农学
  • 33 篇 经济学
  • 23 篇 教育学
  • 11 篇 军事学
  • 9 篇 哲学
  • 8 篇 文学
  • 8 篇 艺术学

主题

  • 142 篇 feature extracti...
  • 104 篇 semantics
  • 88 篇 training
  • 78 篇 laboratories
  • 68 篇 information proc...
  • 66 篇 computational mo...
  • 64 篇 image segmentati...
  • 56 篇 optimization
  • 54 篇 data mining
  • 53 篇 computers
  • 50 篇 face recognition
  • 49 篇 signal processin...
  • 49 篇 accuracy
  • 48 篇 visualization
  • 48 篇 robustness
  • 47 篇 signal processin...
  • 43 篇 deep learning
  • 42 篇 support vector m...
  • 42 篇 machine learning
  • 42 篇 humans

机构

  • 432 篇 key laboratory o...
  • 222 篇 university of ch...
  • 207 篇 key laboratory o...
  • 102 篇 key laboratory o...
  • 83 篇 key laboratory o...
  • 67 篇 school of comput...
  • 65 篇 peng cheng labor...
  • 63 篇 key laboratory o...
  • 63 篇 college of compu...
  • 54 篇 key laboratory o...
  • 53 篇 anhui university...
  • 53 篇 college of mathe...
  • 48 篇 key laboratory o...
  • 47 篇 the key laborato...
  • 46 篇 key laboratory o...
  • 46 篇 hunan provincial...
  • 44 篇 school of comput...
  • 44 篇 graduate univers...
  • 42 篇 college of infor...
  • 40 篇 fujian provincia...

作者

  • 90 篇 zhongzhi shi
  • 84 篇 huang zhixiang
  • 81 篇 shi zhongzhi
  • 74 篇 li yingsong
  • 73 篇 shiguang shan
  • 72 篇 xilin chen
  • 70 篇 zhixiang huang
  • 62 篇 liu qun
  • 62 篇 huang qingming
  • 58 篇 yingsong li
  • 56 篇 xianliang wu
  • 54 篇 shi minjia
  • 43 篇 wu xianliang
  • 43 篇 xu qianqian
  • 39 篇 wu xian-liang
  • 39 篇 feng yang
  • 36 篇 luo bin
  • 34 篇 bin luo
  • 33 篇 he qing
  • 32 篇 wen gao

语言

  • 3,286 篇 英文
  • 343 篇 其他
  • 102 篇 中文
检索条件"机构=Key Laboratory of Intelligent and Computing Signal Processing"
3714 条 记 录,以下是581-590 订阅
排序:
Leveraging Semisupervised Hierarchical Stacking Temporal Convolutional Network for Anomaly Detection in IoT Communication
Leveraging Semisupervised Hierarchical Stacking Temporal Con...
收藏 引用
作者: Cheng, Yongliang Xu, Yan Zhong, Hong Liu, Yi Anhui Engineering Laboratory of IoT Security Technologies Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China Shenzhen Key Laboratory of Intelligent Media and Speech Peking University Shenzhen Institute Shenzhen China
The rapid development of the Internet of Things (IoT) accumulates a large number of communication records, which are utilized for anomaly detection in IoT communication. However, only a small part of these records can... 详细信息
来源: 评论
A NEURAL MULTIGRID SOLVER FOR HELMHOLTZ EQUATIONS WITH HIGH WAVENUMBER AND HETEROGENEOUS MEDIA
arXiv
收藏 引用
arXiv 2024年
作者: Cui, Chen Jiang, Kai Shu, Shi Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
Solving high-wavenumber and heterogeneous Helmholtz equations presents a longstanding challenge in scientific computing. In this paper, we introduce a deep learning-enhanced multigrid solver to address this issue. By ... 详细信息
来源: 评论
FGCM: Modality-behavior Fusion Model Integrated with Graph Contrastive Learning for Multimodal Recommendation
收藏 引用
IEEE Multimedia 2025年
作者: Mo, Feng Xiao, Lin Song, Qiya Gao, Xieping Song, Wenzhuo Wang, Shoujin Hunan Normal University Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Changsha410081 China Northeast Normal University Changchun China University of Technology Sydney Sydney Australia
Multimodal recommender systems (MRSs) aim to integrate information from multiple modalities, for better capturing users' preferences. However, existing MRSs usually face the challenge of data sparsity, especially ... 详细信息
来源: 评论
TWO-GRID ALGORITHM OF H^(1)-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
收藏 引用
Journal of Computational Mathematics 2022年 第5期40卷 667-685页
作者: Tianliang Hou Chunmei Liu Chunlei Dai Luoping Chen Yin Yang School of Mathematics and Statistics Beihua UniversityJilin 132013China College of Science Hunan University of Science and EngineeringYongzhou 425199China School of Mathematics Southwest Jiaotong UniversityChengdu 611756China Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing&Information Processing of Ministry of EducationSchool of Mathematics and Computational ScienceXiangtan UniversityXiangtan 411105China
In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element *** use the lowest order Raviart-Thomas mixed finite elements and c... 详细信息
来源: 评论
A spring pair method of finding saddle points using the minimum energy path as a compass
arXiv
收藏 引用
arXiv 2024年
作者: Cui, Gang Jiang, Kai Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
Finding index-1 saddle points is crucial for understanding phase transitions. In this work, we propose a simple yet efficient approach, the spring pair method (SPM), to accurately locate saddle points. Without requiri... 详细信息
来源: 评论
EDGE: Unknown-aware Multi-label Learning by Energy Distribution Gap Expansion  39
EDGE: Unknown-aware Multi-label Learning by Energy Distribut...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Sun, Yuchen Xu, Qianqian Wang, Zitai Yang, Zhiyong He, Junwei Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China
Multi-label Out-Of-Distribution (OOD) detection aims to discriminate the OOD samples from the multi-label In-Distribution (ID) ones. Compared with its multiclass counterpart, it is crucial to model the joint informati...
来源: 评论
Distilling Knowledge from Heterogeneous Architectures for Semantic Segmentation  39
Distilling Knowledge from Heterogeneous Architectures for Se...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Huang, Yanglin Hu, Kai Zhang, Yuan Chen, Zhineng Gao, Xieping Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University China School of Computer Science Fudan University China Key Laboratory for Artificial Intelligence and International Communication Hunan Normal University China
Current knowledge distillation (KD) methods for semantic segmentation focus on guiding the student to imitate the teacher’s knowledge within homogeneous architectures. However, these methods overlook the diverse know... 详细信息
来源: 评论
The Problems and Analysis of Artificial Intelligence Specialty Construction in Universities Under the Present Situation of Artificial Intelligence Development  8th
The Problems and Analysis of Artificial Intelligence Special...
收藏 引用
8th EAI International Conference on e-Learning, e-Education, and Online Training, eLEOT 2022
作者: Fu, Weina Liu, Shuai Institute of Information Science and Engineering Hunan Normal University Hunan Changsha410081 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Changsha410081 China
China’s independent innovation ability in the field of artificial intelligence is a key link to occupy the commanding heights of future science and technology and talent competition. The cultivation of artificial int... 详细信息
来源: 评论
An Object Detection Algorithm with Multi-scale Context Information Based on YOLOv4  4
An Object Detection Algorithm with Multi-scale Context Infor...
收藏 引用
4th International Conference on Natural Language processing, ICNLP 2022
作者: Ma, Sugang An, Wen Yang, Xiaobao Hou, Zhiqiang Xi'an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an China Xi'an University of Posts and Telecommunications School of Computer Science and Technology Xi'an China Xi'an University of Posts and Telecommunications Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'an China
Most current object detection algorithms have the issue of missing objects due to occlusion. As the great difference of scale between occlusion objects and their integrity is affected, how to reduce the missing rate o... 详细信息
来源: 评论
Novelty Detection-Based Automated Anomaly Identification via Optimized Deep Generative Model  9th
Novelty Detection-Based Automated Anomaly Identification via...
收藏 引用
9th CCF Conference on Big Data, BigData 2021
作者: Liu, Lianye Liu, Jinping Wu, Juanjuan Zhou, Jiaming Cai, Meiling Hunan Meteorological Science Institute Hunan Changsha410007 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Hunan Changsha410081 China
Novelty detection (ND) is a crucial task in machine learning to identify anomalies in the test data in some respects different from the training data. As an anomaly detection method, novelty detection only uses normal... 详细信息
来源: 评论