While deep learning techniques have shown promising performance in the Major Depressive Disorder (MDD) detection task, they still face limitations in real-world scenarios. Specifically, given the data scarcity, some e...
详细信息
Person re-identification is a prevalent technology deployed on intelligent *** have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently h...
详细信息
Person re-identification is a prevalent technology deployed on intelligent *** have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open *** real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera *** low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR *** address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification ***,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR ***,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various *** qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach.
Domain adaptation aims to transfer knowledge from the labeled source domain to an unlabeled target domain that follows a similar but different ***,adversarial-based methods have achieved remarkable success due to the ...
详细信息
Domain adaptation aims to transfer knowledge from the labeled source domain to an unlabeled target domain that follows a similar but different ***,adversarial-based methods have achieved remarkable success due to the excellent performance of domain-invariant feature presentation ***,the adversarial methods learn the transferability at the expense of the discriminability in feature representation,leading to low generalization to the target *** this end,we propose a Multi-view Feature Learning method for the Over-penalty in Adversarial Domain ***,multi-view representation learning is proposed to enrich the discriminative information contained in domain-invariant feature representation,which will counter the over-penalty for discriminability in adversarial ***,the class distribution in the intra-domain is proposed to replace that in the inter-domain to capture more discriminative information in the learning of transferrable *** experiments show that our method can improve the discriminability while maintaining transferability and exceeds the most advanced methods in the domain adaptation benchmark datasets.
Nowadays,the personalized recommendation has become a research hotspot for addressing information *** this,generating effective recommendations from sparse data remains a ***,auxiliary information has been widely used...
详细信息
Nowadays,the personalized recommendation has become a research hotspot for addressing information *** this,generating effective recommendations from sparse data remains a ***,auxiliary information has been widely used to address data sparsity,but most models using auxiliary information are linear and have limited *** to the advantages of feature extraction and no-label requirements,autoencoder-based methods have become quite ***,most existing autoencoder-based methods discard the reconstruction of auxiliary information,which poses huge challenges for better representation learning and model *** address these problems,we propose Serial-Autoencoder for Personalized Recommendation(SAPR),which aims to reduce the loss of critical information and enhance the learning of feature ***,we first combine the original rating matrix and item attribute features and feed them into the first autoencoder for generating a higher-level representation of the ***,we use a second autoencoder to enhance the reconstruction of the data representation of the prediciton rating *** output rating information is used for recommendation *** experiments on the MovieTweetings and MovieLens datasets have verified the effectiveness of SAPR compared to state-of-the-art models.
Text-to-image synthesis refers to generating visual-realistic and semantically consistent images from given textual descriptions. Previous approaches generate an initial low-resolution image and then refine it to be h...
详细信息
Text-to-image synthesis refers to generating visual-realistic and semantically consistent images from given textual descriptions. Previous approaches generate an initial low-resolution image and then refine it to be high-resolution. Despite the remarkable progress, these methods are limited in fully utilizing the given texts and could generate text-mismatched images, especially when the text description is complex. We propose a novel finegrained text-image fusion based generative adversarial networks(FF-GAN), which consists of two modules: Finegrained text-image fusion block(FF-Block) and global semantic refinement(GSR). The proposed FF-Block integrates an attention block and several convolution layers to effectively fuse the fine-grained word-context features into the corresponding visual features, in which the text information is fully used to refine the initial image with more details. And the GSR is proposed to improve the global semantic consistency between linguistic and visual features during the refinement process. Extensive experiments on CUB-200 and COCO datasets demonstrate the superiority of FF-GAN over other state-of-the-art approaches in generating images with semantic consistency to the given texts.
The superior performance of large-scale pre-Trained models, such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformer (GPT), has received increasing attention in bot...
详细信息
Breast cancer is a serious and high morbidity disease in women,and it is the main cause of cancer death in ***,getting tested and diagnosed early can reduce the risk of *** present,there are clinical examinations,imag...
详细信息
Breast cancer is a serious and high morbidity disease in women,and it is the main cause of cancer death in ***,getting tested and diagnosed early can reduce the risk of *** present,there are clinical examinations,imaging screening and biopsies,among which histopathological examination is the gold ***,the process is complicated and time-consuming,and misdiagnosis may *** paper puts forward a classification framework based on deep learning,introducing multi-attention mechanism,selecting kernel convolution instead of ordinary convolution,and using different weights and combinations to pay attention to the accuracy index and growth rate of the *** addition,we also compared the learning rate *** function can fine-tune the learning rate to achieve good performance,using label softening to reduce the loss error caused by model error recognition in the label,and assigning different category weights in the loss function to balance the positive and negative *** used the BreakHis data set to automatically classify histological images into benign and malignant,four categories and eight *** results showed that the accuracy of binary classifications ranged from 98.23%to 98.83%,and that of multiple classifications ranged from 97.89%to 98.11%.
Genealogical knowledge graphs depict the relationships of family networks and the development of family histories. They can help researchers to analyze and understand genealogical data, search for genealogical descend...
详细信息
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target *** key bott...
详细信息
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target *** key bottleneck in unsupervised domain adaptation is how to obtain higher-level and more abstract feature representations between source and target domains which can bridge the chasm of domain ***,deep learning methods based on autoencoder have achieved sound performance in representation learning,and many dual or serial autoencoderbased methods take different characteristics of data into consideration for improving the effectiveness of unsupervised domain ***,most existing methods of autoencoders just serially connect the features generated by different autoencoders,which pose challenges for the discriminative representation learning and fail to find the real cross-domain *** address this problem,we propose a novel representation learning method based on an integrated autoencoders for unsupervised domain adaptation,called *** capture the inter-and inner-domain features of the raw data,two different autoencoders,which are the marginalized autoencoder with maximum mean discrepancy(mAE)and convolutional autoencoder(CAE)respectively,are proposed to learn different feature *** higher-level features are obtained by these two different autoencoders,a sparse autoencoder is introduced to compact these inter-and inner-domain *** addition,a whitening layer is embedded for features processed before the mAE to reduce redundant features inside a local *** results demonstrate the effectiveness of our proposed method compared with several state-of-the-art baseline methods.
Represented by evolutionary algorithms and swarm intelligence algorithms, nature-inspired metaheuristics have been successfully applied to recommender systems and amply demonstrated effectiveness, in particular, for m...
详细信息
暂无评论