咨询与建议

限定检索结果

文献类型

  • 666 篇 期刊文献
  • 575 篇 会议
  • 1 册 图书

馆藏范围

  • 1,242 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 789 篇 工学
    • 565 篇 计算机科学与技术...
    • 453 篇 软件工程
    • 171 篇 信息与通信工程
    • 127 篇 电气工程
    • 97 篇 生物工程
    • 85 篇 控制科学与工程
    • 71 篇 生物医学工程(可授...
    • 61 篇 电子科学与技术(可...
    • 59 篇 化学工程与技术
    • 50 篇 光学工程
    • 42 篇 机械工程
    • 39 篇 材料科学与工程(可...
    • 39 篇 建筑学
    • 29 篇 动力工程及工程热...
    • 27 篇 仪器科学与技术
    • 25 篇 土木工程
    • 24 篇 交通运输工程
    • 20 篇 航空宇航科学与技...
  • 400 篇 理学
    • 208 篇 数学
    • 110 篇 生物学
    • 93 篇 物理学
    • 72 篇 统计学(可授理学、...
    • 61 篇 化学
  • 219 篇 管理学
    • 128 篇 管理科学与工程(可...
    • 108 篇 图书情报与档案管...
    • 42 篇 工商管理
  • 81 篇 医学
    • 68 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
  • 35 篇 法学
    • 30 篇 社会学
  • 25 篇 农学
  • 15 篇 经济学
  • 5 篇 教育学
  • 4 篇 文学
  • 4 篇 艺术学
  • 1 篇 历史学

主题

  • 86 篇 semantics
  • 50 篇 feature extracti...
  • 42 篇 deep learning
  • 42 篇 training
  • 32 篇 data mining
  • 26 篇 computational mo...
  • 26 篇 visualization
  • 25 篇 conferences
  • 25 篇 graph neural net...
  • 23 篇 knowledge engine...
  • 23 篇 neural networks
  • 21 篇 predictive model...
  • 21 篇 accuracy
  • 21 篇 data models
  • 20 篇 contrastive lear...
  • 19 篇 task analysis
  • 19 篇 machine learning
  • 18 篇 convolution
  • 16 篇 image segmentati...
  • 15 篇 knowledge graph

机构

  • 87 篇 school of comput...
  • 66 篇 school of inform...
  • 52 篇 shandong provinc...
  • 46 篇 shandong enginee...
  • 45 篇 school of softwa...
  • 45 篇 key laboratory o...
  • 38 篇 key laboratory o...
  • 34 篇 college of compu...
  • 31 篇 key laboratory o...
  • 30 篇 key laboratory o...
  • 26 篇 school of big da...
  • 26 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 22 篇 college of compu...
  • 21 篇 engineering rese...
  • 21 篇 key laboratory o...
  • 19 篇 college of big d...
  • 18 篇 college of infor...
  • 18 篇 key laboratory o...
  • 17 篇 state key labora...

作者

  • 32 篇 wu xindong
  • 25 篇 xindong wu
  • 24 篇 sun geng
  • 23 篇 chen hong
  • 21 篇 niyato dusit
  • 18 篇 wang yang
  • 18 篇 wang meng
  • 18 篇 zhang jing
  • 17 篇 li cuiping
  • 17 篇 li jiahui
  • 17 篇 wang jiacheng
  • 16 篇 chenyang bu
  • 15 篇 xuegang hu
  • 15 篇 wu qingyao
  • 14 篇 meng wang
  • 14 篇 huang sheng
  • 13 篇 hong chen
  • 13 篇 cai yi
  • 13 篇 wang lihui
  • 13 篇 zhao zhang

语言

  • 1,093 篇 英文
  • 115 篇 其他
  • 45 篇 中文
检索条件"机构=Key Laboratory of Knowledge Engineering with Big Data of Ministry of Education"
1242 条 记 录,以下是371-380 订阅
排序:
CLDG: Contrastive Learning on Dynamic Graphs
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Yiming Shi, Bin Ma, Teng Dong, Bo Zhou, Haoyi Zheng, Qinghua Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c... 详细信息
来源: 评论
Rotation-Adaptive Point Cloud Domain Generalization via Intricate Orientation Learning
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Bangzhen Zheng, Chenxi Xu, Xuemiao Xu, Cheng Zhang, Huaidong He, Shengfeng South China University of Technology Guangzhou China Guangdong Engineering Center for Large Model and GenAI Technology The State Key Laboratory of Subtropical Building and Urban Science The Ministry of Education Key Laboratory of Big Data and Intelligent Robot The Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information China Singapore Management University Singapore
The vulnerability of 3D point cloud analysis to unpredictable rotations poses an open yet challenging problem: orientation-aware 3D domain generalization. Cross-domain robustness and adaptability of 3D representations... 详细信息
来源: 评论
Sharing, Teaching and Aligning: knowledgeable Transfer Learning for Cross-Lingual Machine Reading Comprehension
arXiv
收藏 引用
arXiv 2023年
作者: Cao, Tingfeng Wang, Chengyu Tan, Chuanqi Huang, Jun Zhu, Jinhui School of Software Engineering South China University of Technology China Alibaba Group China Key Laboratory of Big Data and Intelligent Robot South China University of Technology Ministry of Education China
In cross-lingual language understanding, machine translation is often utilized to enhance the transferability of models across languages, either by translating the training data from the source language to the target,... 详细信息
来源: 评论
Densely packed object detection with transformer-based head and EM-merger
Densely packed object detection with transformer-based head ...
收藏 引用
作者: Zhong, Xiaojing Zhang, Ni Hu, Hao Li, Li Cen, Junhua Wu, Qingyao School of Software Engineering South China University of Technology Guangzhou China Key Laboratory of Big Data and Intelligent Robot Ministry of Education Guangzhou China Pazhou Lab Guangzhou China Peng Cheng Laboratory Guangzhou China Zhongnan Building Materials Group Co. Ltd. Guangdong GW Guangzhou China Internet Technology Co. Ltd. Guangdong GW Guangzhou China
Due to the high density of objects and their varying sizes, detecting them accurately and without repetition in such scenarios is more challenging than traditional object detection methods. In this paper, we propose a... 详细信息
来源: 评论
Revisiting Graph Contrastive Learning on Anomaly Detection: A Structural Imbalance Perspective  39
Revisiting Graph Contrastive Learning on Anomaly Detection: ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Xu, Yiming Peng, Zhen Shi, Bin Hua, Xu Dong, Bo Wang, Song Chen, Chen School of Computer Science and Technology Xi'an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University China School of Distance Education Xi'an Jiaotong University China University of Virginia Charlottesville VA United States
The superiority of graph contrastive learning (GCL) has prompted its application to anomaly detection tasks for more powerful risk warning systems. Unfortunately, existing GCL-based models tend to excessively prioriti... 详细信息
来源: 评论
Out-of-Distribution Generalization on Graphs via Progressive Inference
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Yiming Shi, Bin Peng, Zhen Liu, Huixiang Dong, Bo Chen, Chen School of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China School of Distance Education Xi’an Jiaotong University China University of Virginia CharlottesvilleVA United States
The development and evaluation of graph neural networks (GNNs) generally follow the independent and identically distributed (i.i.d.) assumption. Yet this assumption is often untenable in practice due to the uncontroll... 详细信息
来源: 评论
Automatic Life Event Tree Generation for Older Adults  1
收藏 引用
24th International Conference on Human-Computer Interaction, HCII 2022
作者: Gui, Fang Wu, Xi Hu, Min Yang, Jiaoyun School of Computer Science and Information Engineering Hefei University of Technology Hefei China Key Laboratory of Knowledge Engineering with Big Data of Ministry of Education Hefei University of Technology Hefei China National Smart Eldercare International S&T Cooperation Base Hefei University of Technology Hefei China Laboratory of Affective Computing and Advanced Intelligent Machine Hefei University of Technology Hefei China Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei China
Studies have shown that learning personal stories could help provide individualized eldercare services. However, personal stories are often disordered because of the scattered collection, including informal interviews... 详细信息
来源: 评论
MODFuzz: A Multi-Objective Directed Fuzzer for USB Drivers
收藏 引用
IEEE Internet of Things Journal 2025年 第12期12卷 21364-21378页
作者: Zhou, Yilin Peng, Guojun Wang, Xingliang Wang, Chenyang Li, Zichuan Liu, Side Wang, Yanhao Yang, Xiuzhang Fu, Jianming Wuhan University Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education School of Cyber Science and Engineering Wuhan430072 China Indiana University Bloomington BloomingtonIN United States Nio Inc Beijing China Guizhou University Guizhou Big Data Academy Guiyang China
USB interfaces have become ubiquitous in various Internet of Things (IoT) devices, all adhering to the same USB protocol. While enhancing convenience, they also widen the potential attack surface. Fuzzing is a proacti... 详细信息
来源: 评论
A resilient generative model in few-shot question answering
收藏 引用
knowledge-Based Systems 2025年 323卷
作者: Zou, Anqi Chen, Yanping Huang, Ruizhang Qin, Yongbin Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education Guizhou University Guiyang Guizhou550025 China State Key Laboratory of Public Big Data Guizhou University Guiyang Guizhou550025 China College of Computer Science and Technology Guizhou University Guiyang550025 China
In few-shot question answering (QA), only a limited number of training cases are available to tune pre-trained language models (PLMs) for fitting to the task objective. Because a PLM often contains a large number of p... 详细信息
来源: 评论
TFGDA: exploring topology and feature alignment in semi-supervised graph domain adaptation through robust clustering  24
TFGDA: exploring topology and feature alignment in semi-supe...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Jun Dan Weiming Liu Chunfeng Xie Hua Yu Shunjie Dong Yanchao Tan Zhejiang University Queen Mary University of London Dalian University of Technology Shanghai Jiao Tong University Fuzhou University and Engineering Research Center of Big Data Intelligence Ministry of Education and Fujian Key Laboratory of Network Computing and Intelligent Information Processing
Semi-supervised graph domain adaptation, as a branch of graph transfer learning, aims to annotate unlabeled target graph nodes by utilizing transferable knowledge learned from a label-scarce source graph. However, mos...
来源: 评论