咨询与建议

限定检索结果

文献类型

  • 81 篇 会议
  • 56 篇 期刊文献

馆藏范围

  • 137 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 59 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 16 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 6 篇 化学工程与技术
    • 6 篇 生物工程
    • 4 篇 光学工程
    • 4 篇 电气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 农业工程
    • 2 篇 安全科学与工程
  • 52 篇 理学
    • 33 篇 数学
    • 10 篇 化学
    • 10 篇 统计学(可授理学、...
    • 7 篇 生物学
    • 7 篇 系统科学
    • 6 篇 物理学
    • 2 篇 大气科学
  • 26 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 12 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 3 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
  • 1 篇 医学

主题

  • 20 篇 machine learning
  • 10 篇 support vector m...
  • 10 篇 training
  • 9 篇 accuracy
  • 8 篇 educational inst...
  • 8 篇 classification a...
  • 6 篇 computer science
  • 5 篇 search engines
  • 5 篇 feature extracti...
  • 4 篇 learning systems
  • 4 篇 computational in...
  • 4 篇 optimization
  • 3 篇 text categorizat...
  • 3 篇 classification t...
  • 3 篇 indexes
  • 3 篇 training data
  • 3 篇 data mining
  • 3 篇 graph neural net...
  • 3 篇 web pages
  • 3 篇 databases

机构

  • 20 篇 key laboratory o...
  • 19 篇 hebei key labora...
  • 14 篇 college of mathe...
  • 7 篇 key laboratory i...
  • 6 篇 college of mathe...
  • 6 篇 college of mathe...
  • 5 篇 center for machi...
  • 5 篇 hebei key labora...
  • 4 篇 xlim umr cnrs 72...
  • 4 篇 key laboratory o...
  • 4 篇 research center ...
  • 4 篇 key laboratory o...
  • 4 篇 hebei key labora...
  • 3 篇 hedps capt colle...
  • 3 篇 hebei key labora...
  • 3 篇 key laboratory o...
  • 3 篇 department of fo...
  • 3 篇 academy for adva...
  • 3 篇 hebei university...
  • 3 篇 college of mathe...

作者

  • 10 篇 hong-jie xing
  • 8 篇 zhai junhai
  • 7 篇 bai ruipu
  • 6 篇 xing hong-jie
  • 6 篇 yan li
  • 6 篇 hua qiang
  • 6 篇 wei zhou
  • 6 篇 tian xuedong
  • 5 篇 yan zhan
  • 5 篇 wang bing
  • 5 篇 zhang feng
  • 5 篇 li yan
  • 5 篇 théra michel
  • 5 篇 zhang xin
  • 5 篇 yao jen-chih
  • 4 篇 qin ma
  • 4 篇 xue-dong tian
  • 4 篇 yang ying
  • 4 篇 weinan e.
  • 4 篇 hao chen

语言

  • 132 篇 英文
  • 5 篇 其他
检索条件"机构=Key Laboratory of Machine Learning and Computational"
137 条 记 录,以下是21-30 订阅
排序:
Boundedness for the Chemotaxis System with Logistic Growth
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Qian Wu, Yonghong Wang, Peiguang Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding071002 China Department of Mathematics and Statistics Curtin University PerthWA6845 Australia
In this paper, we consider a mathematical model motivated by the studies of coral broadcastspawning\begin{align}\left\{\begin{aligned}\no\partial_{t} n+u\cdot\nabla n-\Delta n & =-\chi \nabla \cdot(n \nabla c)+n-\... 详细信息
来源: 评论
Self-Supervised Network Embedding for Attribute Networks with Outliers Using High-Order Proximity
SSRN
收藏 引用
SSRN 2024年
作者: Wu, Zelong Wang, Yidan Hu, Kaixia Lin, Guoliang Xu, Xinwei Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Hebei Baoding071002 China College of Cyber Security Jinan University Guangdong Guangzhou510632 China
Real-world networks contain rich semantic information, making attribute network embedding a vital tool for their analysis and exploitation. Nevertheless, this embedding process encounters significant challenges, prima... 详细信息
来源: 评论
A Membership-Based Resampling and Cleaning Algorithm for Multi-Class Imbalanced Overlapping Data
SSRN
收藏 引用
SSRN 2022年
作者: Ma, Tingting Lu, Shuxia Jiang, Chen Hebei Province Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding071002 China
Real-world datasets frequently have an imbalanced class distribution, which significantly degrades classification performance. However, some studies have suggested that the adverse effects of class imbalance occur onl... 详细信息
来源: 评论
Update of approximations in ordered information systems under variations of attribute and object set
收藏 引用
Advances in computational Intelligence 2022年 第1期2卷 1-13页
作者: Li, Yan Wu, Xiaoxue Hua, Qiang Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province College of Mathematics and Information Science Hebei University Baoding China School of Applied Mathematics Beijing Normal University Zhuhai China
Many collected data from real world applications often evolve when new attributes or objects are inserted or old ones are removed. The set approximations of ordered information systems (OIS) need to be updated from ti...
来源: 评论
Study on the Construction Method of Requirement Knowledge Atlas Based on Graph Neural Network  4
Study on the Construction Method of Requirement Knowledge At...
收藏 引用
4th IEEE International Conference on Information Systems and Computer Aided Education, ICISCAE 2021
作者: Wang, Fei Wang, Shuo Tang, Qing Du, Yongjie Renmin University of China Beijing China Hebei University Key Laboratory of Machine Learning and Computational Intelligence Baoding071002 China Sense Time Beijing China Agricultural Bank of China Beijing China
As a structured semantic knowledge system, knowledge graph mainly uses symbols to present physical concepts in real life, which involves three aspects: Triples, entities and the network structure connected with relate... 详细信息
来源: 评论
Rotation transformation-based selective ensemble of one-class extreme learning machines
收藏 引用
Advances in computational Intelligence 2021年 第1期2卷 1-10页
作者: Xing, Hong-Jie Bai, Yu-Wen Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding China
Extreme learning machine (ELM) possesses merits of rapid learning speed and good generalization ability. However, due to the random initialization of connection weights, the network outputs of ELM are usually unstable...
来源: 评论
Multi- View Teacher with Curriculum Data Fusion for Robust Unsupervised Domain Adaptation
Multi- View Teacher with Curriculum Data Fusion for Robust U...
收藏 引用
International Conference on Data Engineering
作者: Yuhao Tang Junyu Luo Ling Yang Xiao Luo Wentao Zhang Bin Cui School of CS & Key Laboratory of High Confidence Software Technologies (MOE) Peking University School of CS Peking University University of California Los Angeles Center for Machine Learning Research Peking University Institute of Computational Social Science Peking University (Qingdao) China
Graph Neural Networks (GNNs) have emerged as an effective tool for graph classification, yet their reliance on extensive labeled data poses a significant challenge, especially when such labels are scarce. To address t... 详细信息
来源: 评论
Maximizing bi-mutual information of features for self-supervised deep clustering
收藏 引用
Advances in computational Intelligence 2021年 第1期2卷 1-11页
作者: Zhao, Jiacheng Chen, Junfen Meng, Xiangjie Zhai, Junhai Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province College of Mathematics and Information Science Hebei University Baoding China
Self-supervised learning based on mutual information makes good use of classification models and label information produced by clustering tasks to train networks parameters, and then updates the downstream clustering ...
来源: 评论
HGAMLP: Heterogeneous Graph Attention MLP with De-Redundancy Mechanism
HGAMLP: Heterogeneous Graph Attention MLP with De-Redundancy...
收藏 引用
International Conference on Data Engineering
作者: Yuxuan Liang Wentao Zhang Zeang Sheng Ling Yang Jiawei Jiang Yunhai Tong Bin Cui School of Intelligence Science and Technology Peking University Center for Machine Learning Research Peking University School of CS & Key Laboratory of High Confidence Software Technologies (MOE) Peking University School of Computer Science Wuhan University Institute of Computational Social Science Peking University (Qingdao)
Heterogeneous graphs contain rich semantic information that can be exploited by heterogeneous graph neural networks (HGNNs). However, scaling HGNNs to large graphs is challenging due to the high computational cost. Ex... 详细信息
来源: 评论
Second-Order Convolutional Neural Network Based on Cholesky Compression Strategy  21st
Second-Order Convolutional Neural Network Based on Cholesky ...
收藏 引用
21st International Conference on Parallel and Distributed Computing, Applications, and Technologies, PDCAT 2020
作者: Li, Yan Zhang, Jing Hua, Qiang Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province College of Mathematics and Information Science Hebei University Baoding071002 China Research Center for Applied Mathematics and Interdisciplinary Sciences Beijing Normal University at Zhuhai Beijing519087 China
In the past few years, Convolution Neural Network (CNN) has been successfully applied to many computer vision tasks. Most of these networks can only extract first-order information from input images. The second-order ... 详细信息
来源: 评论