咨询与建议

限定检索结果

文献类型

  • 59 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 84 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 38 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 9 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 7 篇 化学工程与技术
    • 6 篇 生物医学工程(可授...
    • 4 篇 动力工程及工程热...
    • 4 篇 电子科学与技术(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
  • 38 篇 理学
    • 17 篇 数学
    • 16 篇 生物学
    • 8 篇 化学
    • 7 篇 物理学
    • 7 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 11 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 9 篇 医学
    • 8 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 4 篇 农学
    • 3 篇 作物学
  • 3 篇 法学
    • 3 篇 社会学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 3 篇 object detection
  • 3 篇 data mining
  • 3 篇 contrastive lear...
  • 3 篇 large language m...
  • 3 篇 semantics
  • 3 篇 feature extracti...
  • 3 篇 artificial intel...
  • 3 篇 collaboration
  • 3 篇 data models
  • 2 篇 internet of thin...
  • 2 篇 cancer
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 anomaly detectio...
  • 2 篇 manuals
  • 2 篇 education
  • 2 篇 neural networks
  • 2 篇 convolution
  • 2 篇 market research

机构

  • 19 篇 center for data ...
  • 11 篇 center for machi...
  • 8 篇 school of comput...
  • 7 篇 national key lab...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 5 篇 national biomedi...
  • 5 篇 shandong univ fi...
  • 4 篇 national enginee...
  • 4 篇 yizhun medical a...
  • 4 篇 machine learning...
  • 4 篇 ux center neteas...
  • 4 篇 beijing internat...
  • 4 篇 machine learning...
  • 3 篇 school of comput...
  • 3 篇 financial univer...
  • 3 篇 big data institu...
  • 3 篇 peking universit...
  • 3 篇 machine learning...

作者

  • 12 篇 wang liwei
  • 5 篇 li zhang
  • 5 篇 guizani mohsen
  • 5 篇 bin dong
  • 4 篇 soloviev vladimi...
  • 4 篇 lin shen
  • 4 篇 wang dong
  • 4 篇 dong bin
  • 4 篇 zhao ziwei
  • 4 篇 zifan chen
  • 4 篇 yang chen
  • 4 篇 he di
  • 4 篇 zhang li
  • 4 篇 nan xinyu
  • 4 篇 chen zifan
  • 4 篇 li shanda
  • 3 篇 tang lei
  • 3 篇 mao wulan
  • 3 篇 wang ran
  • 3 篇 li rui

语言

  • 63 篇 英文
  • 20 篇 其他
  • 1 篇 中文
检索条件"机构=Key Laboratory of Machine Learning and Financial Data"
84 条 记 录,以下是61-70 订阅
排序:
Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Chuwei Li, Shanda He, Di Wang, Liwei School of Mathematical Sciences Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Center for Data Science Peking University China Zhejiang Lab China
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The L2 Physics-Informed Loss is the de-facto standard in training Physics-Inf... 详细信息
来源: 评论
A REDUCTION-BASED FRAMEWORK FOR CONSERVATIVE BANDITS AND REINFORCEMENT learning
arXiv
收藏 引用
arXiv 2021年
作者: Yang, Yunchang Wu, Tianhao Zhong, Han Garcelon, Evrard Pirotta, Matteo Lazaric, Alessandro Wang, Liwei Du, Simon S. Center for Data Science Peking University China University of California Berkeley United States Center for Data Sience Peking University China Facebook AI Research Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University International Center for Machine Learning Research China University of Washington United States
We study bandits and reinforcement learning (RL) subject to a conservative constraint where the agent is asked to perform at least as well as a given baseline policy. This setting is particular relevant in real-world ... 详细信息
来源: 评论
Tackling Noisy Labels with Network Parameter Additive Decomposition
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Jingyi Xia, Xiaobo Lan, Long Wu, Xinghao Yu, Jun Yang, Wenjing Han, Bo Liu, Tongliang The Department of Intelligent Data Science College of Computer Science and Technology National University of Defense Technology Changsha410073 China The Trustworthy Machine Learning Lab School of Computer Science Faculty of Engineering University of Sydney DarlingtonNSW2008 Australia The State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing100191 China The Department of Automation University of Science and Technology of China Hefei230026 China The Department of Computer Science Hong Kong Baptist University Hong Kong
Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the a... 详细信息
来源: 评论
learning referee evaluation and assessing action quality from coarse to fine in diving sport
收藏 引用
Neurocomputing 2025年 648卷
作者: Hong-Ming Qiu Hong-Bo Zhang Qing Lei Jing-Hua Liu Ji-Xiang Du Department of Computer Science and Technology Huaqiao University Xiamen 361021 China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Xiamen 361021 China Key Laboratory of Computer Vision and Machine Learning (Huaqiao University) Fujian Province University Xiamen 361021 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen 361021 China
Intelligently assessing the quality of athletic performances in sports scenarios remains a fascinating challenge in computer vision. However, unraveling the subtle distinctions between two similar actions in videos an... 详细信息
来源: 评论
Voting-Based Multiagent Reinforcement learning for Intelligent IoT
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2021年 第4期8卷 2681-2693页
作者: Xu, Yue Deng, Zengde Wang, Mengdi Xu, Wenjun So, Anthony Man-Cho Cui, Shuguang Beijing Univ Posts & Telecommun Minist Educ Key Lab Universal Wireless Commun Beijing 100876 Peoples R China Chinese Univ Hong Kong Shenzhen Res Inst Big Data Shenzhen 518172 Peoples R China Chinese Univ Hong Kong Sch Sci & Engn Shenzhen 518172 Peoples R China Chinese Univ Hong Kong Dept Syst Engn & Engn Management Hong Kong Peoples R China Princeton Univ Dept Elect Engn Ctr Stat & Machine Learning Dept Operat Res & Financial Engn Princeton NJ 08544 USA Princeton Univ Dept Comp Sci Princeton NJ 08544 USA Chinese Univ Hong Kong Future Network Intelligence Inst Shenzhen 518172 Peoples R China
The recent success of single-agent reinforcement learning (RL) in Internet of Things (IoT) systems motivates the study of multiagent RL (MARL), which is more challenging but more useful in large-scale IoT. In this art... 详细信息
来源: 评论
Computationally Efficient Approximations for Matrix-based Rényi's Entropy
arXiv
收藏 引用
arXiv 2021年
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo The School of Computer Science and Technology Xi'an Jiaotong University Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an710049 China The Machine Learning Group UiT - The Arctic University of Norway Department of Computer Science Vrije University Amsterdam Amsterdam Netherlands
The recently developed matrix-based Rényi's αorder entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel H... 详细信息
来源: 评论
Robust and Fast Measure of Information via Low-rank Representation
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Yuxin Gong, Tieliang Yu, Shujian Chen, Hong Li, Chen School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Ministry of Education Xi’an710049 China Machine Learning Group UiT - The Arctic University of Norway Norway College of Science Huazhong Agriculture University Wuhan430070 China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China
The matrix-based Rényi’s entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it wid... 详细信息
来源: 评论
Adversarial learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
The effect of deterministic noise on a quasi-subgradient method for quasi-convex feasibility problems
Journal of Applied and Numerical Optimization
收藏 引用
Journal of Applied and Numerical Optimization 2020年 第2期2卷 235-247页
作者: Hu, Yaohua Liu, Yuping Li, Minghua Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China School of Mathematics and Big Data Chongqing University of Arts and Sciences Yongchuan Chongqing402160 China
The quasi-convex feasibility problem (QFP), in which the involved functions are quasi-convex, is at the core of the modeling of many problems in various areas such as economics, finance and management science. In this... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论