Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i...
详细信息
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow imaging speed and motion artifacts are notable limitations. Undersampling reconstruction, especially data-driven algorithms, has emerged as a promising solution to accelerate scans and enhance imaging performance using highly under-sampled data. Nevertheless, the scarcity of publicly available cardiac k-space datasets and evaluation platform hinder the development of data-driven reconstruction algorithms. To address this issue, we organized the Cardiac MRI Reconstruction Challenge (CMRxRecon) in 2023, in collaboration with the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). CMRxRecon presented an extensive k-space dataset comprising cine and mapping raw data, accompanied by detailed annotations of cardiac anatomical structures. With overwhelming participation, the challenge attracted more than 285 teams and over 600 participants. Among them, 22 teams successfully submitted Docker containers for the testing phase, with 7 teams submitted for both cine and mapping tasks. All teams use deep learning based approaches, indicating that deep learning has predominately become a promising solution for the problem. The first-place winner of both tasks utilizes the E2E-VarNet architecture as backbones. In contrast, U-Net is still the most popular backbone for both multi-coil and single-coil reconstructions. This paper provides a comprehensive overview of the challenge design, presents a summary of the submitted results, reviews the employed methods, and offers an in-depth discussion that aims to inspire future advancements in cardiac MRI reconstruction models. The summary emphasizes the effective strategies observed in Cardiac MRI reconstruction, including backbone architecture, loss function, pre-processing techn
—Uplink-downlink duality refers to the fact that under a sum-power constraint, the capacity regions of a Gaussian multiple-access channel and a Gaussian broadcast channel with Hermitian transposed channel matrices ar...
详细信息
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique...
详细信息
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a ...
详细信息
暂无评论