Leaks in natural gas pipelines can cause very serious safety accidents, and timely detection and remedial action can greatly reduce the losses. In recent years, pipeline leak detection has received extensive studies. ...
Leaks in natural gas pipelines can cause very serious safety accidents, and timely detection and remedial action can greatly reduce the losses. In recent years, pipeline leak detection has received extensive studies. Most methods use pressure sensors or acoustic sensors to detect pipelines, but there are certain limitations on the usage scenarios and detection time delays. On this basis, this paper selects maglev vibration detector to detect the vibration signal of pipelines. The difficulty lies in that, sudden changes in vibration signals due to external disturbances, may lead to false alarms. Therefore, this paper proposes a pipeline leak detection method using Multivariate Gaussian Distribution based Kullback-Leibler Divergence (MGD-KLD) and on-delay timer to reduce false alarms during the detection process. In this paper, by constructing a simulated pipeline platform for leak experiments and applying the above method to process the experimental data, the false alarm rate of pipeline leak detection can be effectively reduced.
In recent years, although the overall quality of the new energy vehicle (NEV) industry has shown an upward trend, it is difficult to ignore the turbulence in the production and sales of NEV. The impact caused by dual ...
详细信息
Establishing the dynamics model of the offshore drilling experimental system can better complete the offshore drilling test in the laboratory environment and reduce the cost of testing.A dynamical modeling method for ...
Establishing the dynamics model of the offshore drilling experimental system can better complete the offshore drilling test in the laboratory environment and reduce the cost of testing.A dynamical modeling method for the offshore drilling experimental system built on the double-layer Stewart parallel mechanism is ***,the kinematic and dynamical characteristics of the double-layer Stewart parallel mechanism are combined with the Lagrange method and the virtual work method to establish the dynamics model of the *** a parameter identification scheme is designed using a nonlinear gray system estimation method based on the trust-domain reflection algorithm,and the model parameters are *** model is downscaled to improve the feasibility of the identification scheme and the accuracy of the identified *** actual experimental system data verify this model's correctness and the model parameters' accuracy.
For hybrid energy storage systems in DC microgrids, a droop control consisting of virtual capacitors and virtual resistors can decompose power into high-frequency components and low-frequency components, then assign t...
For hybrid energy storage systems in DC microgrids, a droop control consisting of virtual capacitors and virtual resistors can decompose power into high-frequency components and low-frequency components, then assign them to batteries and supercapacitors to respond respectively. However, aiming at the service life of the energy storage system, this paper considers the characteristics and key parameters of the hybrid energy storage structure and proposes an adaptive drooping comprehensive control strategy considering the SOC of the energy storage unit given the shortcomings of power distribution within the current hybrid energy storage. According to the self-regulation capacity of each energy storage unit, it is sorted and constrained, and protected by using SOC, which ensures the economy and safety of the system while ensuring power distribution. The traditional droop control and adaptive droop control are simulated to verify the effectiveness of the proposed control strategy.
In this paper, the events-based model predictive control (MPC) problem is studied for systems under false data injection (FDI) attacks. A time-varying event-triggered mechanism (ETM) is proposed to manage measurement ...
详细信息
In this paper, the events-based model predictive control (MPC) problem is studied for systems under false data injection (FDI) attacks. A time-varying event-triggered mechanism (ETM) is proposed to manage measurement data packet releases and a static ETM is used to reduce the influence of the FDI attacks on the controller. By using the properties of the defined robust positive invariant set, a solvable auxiliary optimization problem (OP) is proposed to design the controller. The recursive feasibility of the auxiliary OP and the input-to-state stability of the closed-loop system are guaranteed. The validity of the developed ETMs-based anti-attack MPC algorithm is shown by an example.
At present, most research on the coverage of multi-agent systems is based on Euclidean distance. This does not consider the existence of obstacles and has great limitations in the application. In this paper, a kind of...
At present, most research on the coverage of multi-agent systems is based on Euclidean distance. This does not consider the existence of obstacles and has great limitations in the application. In this paper, a kind of coverage control problem based on high-order geodesic Voronoi partition is practically investigated. It allows multiple agents to monitor an area with obstacles to achieve the monitoring of the overall environment. As a result, the geodesic distance is introduced as a metric form. Based on the geodesic distance, point-by-point scanning on the layer is taken to achieve high-order Voronoi diagram division. The coverage algorithm can be implemented in a distributed manner through the exchange of location information with each other, and the Lloyd algorithm is added to realize the movement of the sensor toward the optimal position.
This paper addresses the robust finite-time stabi-lization (FTS) issue for stochastic parabolic PDE systems via non-fragile spatial sampled-data control scheme. First, a class of distributed parameter systems characte...
This paper addresses the robust finite-time stabi-lization (FTS) issue for stochastic parabolic PDE systems via non-fragile spatial sampled-data control scheme. First, a class of distributed parameter systems characterized by the delayed stochastic parabolic partial differential equation is developed for analyzing the effects of stochastic disturbance, structural uncertainty, and discrete delay on the system performance. Then, a non-fragile spatial sampled-data control scheme is established by setting sampling points in the spatial domain, which effectively saves communication resources and ensures that the closed-loop system maintains good performance when the controller is perturbed. Moreover, based on the partial differential equation theory, stochastic analysis approach, and the extended Wirtinger's inequality technique, several criteria are provided to ensure the robust FTS of stochastic parabolic PDE systems in the mean square sense. Lastly, a numerical example is provided to verify the feasibility of the suggested stabilization criteria and control scheme.
The active simultaneously transmitting and reflecting surface (STARS) has been proposed as a complement of passive STARS (PSTARS) to inhibit the double path-loss. This paper applies the active STARS (ASTARS) to aid in...
详细信息
In this paper, a novel hybrid model is proposed for online prediction of rate of penetration (ROP) in drilling process, which including two parts (online data pre-processing and online hybrid modeling). In the first p...
In this paper, a novel hybrid model is proposed for online prediction of rate of penetration (ROP) in drilling process, which including two parts (online data pre-processing and online hybrid modeling). In the first part, threshold filtering and Savitzky Golay (SG) filtering are both employed to enhance the quality of drilling data considering the expert experience and data characteristics. In the next part, a novel hybrid model with error compensation is established, which is combined the Bingham sub-model and gradient boosting decision tree (GBDT) sub-model. To better capture the dynamic changes of ROP, the hybrid model is updated with moving window strategy. Finally, compared simulation results with well-known ROP prediction models indicate the efficiency of the hybrid model.
In this paper, a template matching and trend feature analysis-based data pre-processing method for seismic wave detection is proposed with two stages. In the first stage, it involves extracting the rock physical param...
In this paper, a template matching and trend feature analysis-based data pre-processing method for seismic wave detection is proposed with two stages. In the first stage, it involves extracting the rock physical parameters from seismic wave detection results using OCR (Optical Character Recognition) method, and extracting the original rock physical parameters from the raw rock property table using keyword matching method. Using the rock physical parameters as a template, a template matching approach is employed to eliminate abnormal values from the original rock physical parameters. In the next stage, a technique is proposed to extract trend features of rock physical parameters for conducting advanced geological forecasting, which considered the expertise of experts in interpreting seismic wave detection data. Finally, the effectiveness of the proposed method is verified by the compared simulation results.
暂无评论