咨询与建议

限定检索结果

文献类型

  • 524 篇 会议
  • 257 篇 期刊文献

馆藏范围

  • 781 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 534 篇 工学
    • 203 篇 软件工程
    • 192 篇 计算机科学与技术...
    • 185 篇 控制科学与工程
    • 141 篇 机械工程
    • 95 篇 电气工程
    • 89 篇 信息与通信工程
    • 58 篇 电子科学与技术(可...
    • 43 篇 仪器科学与技术
    • 40 篇 动力工程及工程热...
    • 32 篇 生物工程
    • 25 篇 交通运输工程
    • 23 篇 光学工程
    • 20 篇 航空宇航科学与技...
    • 19 篇 化学工程与技术
    • 18 篇 安全科学与工程
    • 17 篇 土木工程
    • 15 篇 力学(可授工学、理...
    • 15 篇 建筑学
    • 14 篇 材料科学与工程(可...
    • 12 篇 核科学与技术
  • 267 篇 理学
    • 128 篇 数学
    • 75 篇 物理学
    • 75 篇 系统科学
    • 42 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 17 篇 化学
  • 89 篇 管理学
    • 74 篇 管理科学与工程(可...
    • 20 篇 工商管理
    • 15 篇 图书情报与档案管...
  • 11 篇 经济学
    • 11 篇 应用经济学
  • 9 篇 法学
  • 8 篇 医学
  • 6 篇 农学
  • 4 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 22 篇 feature extracti...
  • 20 篇 training
  • 13 篇 object detection
  • 13 篇 simulation
  • 13 篇 trajectory
  • 13 篇 accuracy
  • 13 篇 disturbance reje...
  • 12 篇 reinforcement le...
  • 12 篇 stability analys...
  • 12 篇 topology
  • 11 篇 deep learning
  • 11 篇 closed loop syst...
  • 11 篇 observers
  • 11 篇 neural networks
  • 11 篇 gravitational wa...
  • 11 篇 face recognition
  • 11 篇 multi-agent syst...
  • 10 篇 optimization
  • 10 篇 sliding mode con...
  • 10 篇 convolutional ne...

机构

  • 252 篇 school of automa...
  • 161 篇 key laboratory o...
  • 136 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 23 篇 school of automa...
  • 17 篇 ministry of educ...
  • 16 篇 department of as...
  • 16 篇 advanced technol...
  • 16 篇 kamioka branch n...
  • 16 篇 institute for pl...
  • 16 篇 university of so...
  • 16 篇 department of ph...
  • 16 篇 department of ph...
  • 16 篇 accelerator labo...
  • 16 篇 faculty of infor...
  • 16 篇 southeast univer...
  • 15 篇 infn sezione di ...
  • 15 篇 national tsing h...
  • 15 篇 department of ph...
  • 15 篇 department of ph...

作者

  • 67 篇 shihua li
  • 41 篇 li shihua
  • 37 篇 lu xiaobo
  • 33 篇 xiaobo lu
  • 28 篇 shumin fei
  • 24 篇 ya zhang
  • 21 篇 changyin sun
  • 21 篇 xiangyu wang
  • 19 篇 kanjian zhang
  • 18 篇 haikun wei
  • 17 篇 yang jie
  • 17 篇 fei shumin
  • 16 篇 qing-hao meng
  • 16 篇 jin shi
  • 16 篇 jun yang
  • 15 篇 r. takahashi
  • 15 篇 j. c. bayley
  • 15 篇 t. m. evans
  • 15 篇 k. komori
  • 15 篇 t. kajita

语言

  • 677 篇 英文
  • 74 篇 其他
  • 30 篇 中文
检索条件"机构=Key Laboratory of Measurement and Control ofComplex Systems of Engineering"
781 条 记 录,以下是91-100 订阅
Guided Transformative GAN: Joint Face Image Super-Resolution and Frontalization
Guided Transformative GAN: Joint Face Image Super-Resolution...
收藏 引用
International Conference on systems and Informatics (ICSAI)
作者: Minghao Mu Wei Wang Xiaobo Lu Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education School of Automation Southeast University Nanjing China
Joint face super-resolution and frontalization of non-frontal low-resolution faces is of significant importance for many face analysis applications. However, at the same time, it is a challenging task. In this paper, ... 详细信息
来源: 评论
Enabling Few-Shot Learning with PID control: A Layer Adaptive Optimizer  41
Enabling Few-Shot Learning with PID Control: A Layer Adaptiv...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Yu, Le Li, Xinde Zhang, Pengfei Zhang, Zhentong Dunkin, Fir School of Automation Southeast University Nanjing China Nanjing Center for Applied Mathematics Nanjing China Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education Southeast University Nanjing China Southeast University Shenzhen Research Institute Shenzhen China
Model-Agnostic Meta-Learning (MAML) and its variants have shown remarkable performance in scenarios characterized by a scarcity of labeled data during the training phase of machine learning models. Despite these succe...
来源: 评论
A Image steganography Technique based on Denoising Diffusion Probabilistic Models
A Image steganography Technique based on Denoising Diffusion...
收藏 引用
Youth Academic Annual Conference of Chinese Association of Automation (YAC)
作者: Enzhi Xu Yang Cao Le Hu Chenxing Wang School of Automation Southeast University Nanjing China Key Laboratory of Measurement and Control of Complex Systems of Engineering Nanjing China
Image steganography is the process of hiding secret information into an image while still keeping its original appearance intact. It plays a crucial role in secure communication and data storage. While deep learning-b... 详细信息
来源: 评论
PVTimesNet: A Hybrid Deep Learning Method for Enhancing Ultra-short-term PV Power Forecasting
PVTimesNet: A Hybrid Deep Learning Method for Enhancing Ultr...
收藏 引用
2024 China Automation Congress, CAC 2024
作者: Wu, Ji Wang, Kai Ma, Wenwen Zhang, Jingxin Wang, Shibo China Electric Power Research Institute Nanjing China Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education School of Automation Southeast University Nanjing210096 China State Grid Shandong Electric Power Research Institute Jinan China
Accurate ultra-short-term photovoltaic (PV) power forecasting is crucial for the real-time scheduling of grid systems. However, the inherent variability of solar energy makes this task extremely challenging. To enhanc... 详细信息
来源: 评论
Aperiodically Intermittent control for Prescribed-Time Synchronization of Stochastic Complex Networks
Aperiodically Intermittent Control for Prescribed-Time Synch...
收藏 引用
Youth Academic Annual Conference of Chinese Association of Automation (YAC)
作者: Haoyu Zhou Lei Xue Jian Liu Tong Wu Yongbao Wu Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education School of Automation Southeast University Nanjing China
This paper tackles the challenge of achieving prescribed-time synchronization (PTS) for stochastic complex networks (SCNs) under the framework of aperiodically intermittent control (AIC). The adoption of a time-varyin... 详细信息
来源: 评论
Finite-Time Observer Based Integral Terminal SMC for Converter-Driven Motor systems with Mismatched Disturbances
Finite-Time Observer Based Integral Terminal SMC for Convert...
收藏 引用
2023 China Automation Congress, CAC 2023
作者: Zhang, Zhongding Guo, Zeyu Wang, Zuo Li, Shihua School of Automation Southeast University Nanjing210096 China Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education Nanjing210096 China Shenzhen Research Institute Southeast University Shenzhen518063 China
Converter-driven motor systems play crucial roles in contemporary industrial applications owning to the advantages of smooth starting and stepless speed regulation. For such fourth-order systems with both immeasurable... 详细信息
来源: 评论
Apollonius Partitions Based Pursuit-evasion Game Strategies by Q-Learning Approach  41
Apollonius Partitions Based Pursuit-evasion Game Strategies ...
收藏 引用
第41届中国控制会议
作者: Qing Wang KaiQi Wu JianFeng Ye YongBao Wu Lei Xue SEU-Monash Joint Graduate school Southeast University The College of Software Engineering Southeast University School of Automation Southeast UniversityKey Laboratory of Measurement and Control of Complex Systems of EngineeringMinistry of Education
This paper studies a classical single pursuer and single evader pursuit-evasion *** pursuer attempts to capture the slower evader who aims to extend its lifetime during the *** simplify this question,requiring the eva... 详细信息
来源: 评论
E-Nose-Based Cross-Domain Recognition of Combustion-Supporting Agents via M-BFFNet  42
E-Nose-Based Cross-Domain Recognition of Combustion-Supporti...
收藏 引用
42nd Chinese control Conference, CCC 2023
作者: Wang, De-Xiu Meng, Qing-Hao Han, Rui-Xue Li, Hong-Yue Hou, Hui-Rang Institute of Robotics and Autonomous Systems School of Electrical and Information Engineering Tianjin University Tianjin Key Laboratory of Process Measurement and Control Tianjin300072 China Tianjin Navigation Instruments Research Institute Tianjin300131 China
Identification of the type of combustion-supporting agents (CSAs) by an electronic nose (e-nose) is severely limited due to the absence of untested gas concentration in the e-nose training set. In order to solve this ... 详细信息
来源: 评论
Multiple AMR Rigid Formation control With Collision Avoidance Based On MADDPG  41
Multiple AMR Rigid Formation Control With Collision Avoidanc...
收藏 引用
第41届中国控制会议
作者: Kaiqi Wu Qing Wang YongBao Wu Jian Liu Lei Xue The College of Software Engineering Southeast University SEU-Monash Joint Graduate school Southeast University School of Automation Southeast UniversityKey Laboratory of Measurement and Control of Complex Systems of EngineeringMinistry of Education
Recently,the formation control of multiple autonomous mobile robots(AMRs) have gained significant attention,and autonomous mobile robots(AMRs) have applied to all aspects of our ***-agent reinforcement learning is use... 详细信息
来源: 评论
Data-Driven Multi-step Nonlinear Model Predictive control for Industrial Heavy Load Hydraulic Robot
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Dexian Zhou, Bo Key Laboratory of Measurement and Control of Complex Systems of Engineering School of Automation Southeast University Ministry of Education Nanjing210096 China
Automating complex industrial robots requires precise nonlinear control and efficient energy management. This paper introduces a data-driven nonlinear model predictive control (NMPC) framework to optimize control unde... 详细信息
来源: 评论