咨询与建议

限定检索结果

文献类型

  • 1,672 篇 会议
  • 839 篇 期刊文献

馆藏范围

  • 2,511 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,646 篇 工学
    • 666 篇 软件工程
    • 648 篇 计算机科学与技术...
    • 612 篇 控制科学与工程
    • 401 篇 机械工程
    • 247 篇 电气工程
    • 174 篇 信息与通信工程
    • 164 篇 电子科学与技术(可...
    • 161 篇 仪器科学与技术
    • 121 篇 生物工程
    • 93 篇 交通运输工程
    • 80 篇 动力工程及工程热...
    • 75 篇 力学(可授工学、理...
    • 69 篇 化学工程与技术
    • 63 篇 光学工程
    • 62 篇 生物医学工程(可授...
    • 58 篇 材料科学与工程(可...
    • 52 篇 土木工程
    • 48 篇 安全科学与工程
    • 42 篇 冶金工程
    • 36 篇 建筑学
  • 793 篇 理学
    • 416 篇 数学
    • 256 篇 系统科学
    • 203 篇 物理学
    • 120 篇 生物学
    • 116 篇 统计学(可授理学、...
    • 51 篇 化学
  • 324 篇 管理学
    • 272 篇 管理科学与工程(可...
    • 56 篇 工商管理
    • 54 篇 图书情报与档案管...
  • 53 篇 医学
    • 42 篇 临床医学
  • 38 篇 法学
  • 33 篇 经济学
  • 16 篇 农学
  • 10 篇 文学
  • 9 篇 艺术学
  • 8 篇 教育学
  • 7 篇 军事学
  • 1 篇 历史学

主题

  • 70 篇 feature extracti...
  • 70 篇 training
  • 49 篇 neural networks
  • 49 篇 stability analys...
  • 45 篇 accuracy
  • 44 篇 predictive model...
  • 42 篇 control systems
  • 40 篇 reinforcement le...
  • 39 篇 optimization
  • 38 篇 automation
  • 37 篇 simulation
  • 36 篇 deep learning
  • 35 篇 trajectory
  • 34 篇 optimal control
  • 34 篇 mathematical mod...
  • 34 篇 data models
  • 33 篇 computational mo...
  • 33 篇 multi-agent syst...
  • 30 篇 robustness
  • 29 篇 real-time system...

机构

  • 576 篇 hubei key labora...
  • 529 篇 school of automa...
  • 387 篇 engineering rese...
  • 256 篇 school of automa...
  • 175 篇 state key labora...
  • 163 篇 key laboratory o...
  • 135 篇 key laboratory o...
  • 108 篇 the state key la...
  • 91 篇 school of artifi...
  • 78 篇 state key labora...
  • 59 篇 the state key la...
  • 56 篇 school of automa...
  • 56 篇 ieee
  • 53 篇 qingdao academy ...
  • 53 篇 key laboratory o...
  • 43 篇 university of ch...
  • 42 篇 school of engine...
  • 42 篇 ministry of educ...
  • 33 篇 beijing engineer...
  • 29 篇 school of automa...

作者

  • 121 篇 fei-yue wang
  • 110 篇 min wu
  • 68 篇 shihua li
  • 68 篇 jinhua she
  • 62 篇 gang xiong
  • 61 篇 wang fei-yue
  • 54 篇 weihua cao
  • 48 篇 wu min
  • 43 篇 li shihua
  • 38 篇 lu xiaobo
  • 37 篇 xiaobo lu
  • 34 篇 chengda lu
  • 32 篇 qinglai wei
  • 31 篇 xiong gang
  • 31 篇 cao weihua
  • 31 篇 xin chen
  • 30 篇 chuan-ke zhang
  • 29 篇 shumin fei
  • 29 篇 luefeng chen
  • 27 篇 zhen shen

语言

  • 2,195 篇 英文
  • 259 篇 其他
  • 60 篇 中文
检索条件"机构=Key Laboratory of Measurements and Control of Complex Systems of Engineering"
2511 条 记 录,以下是401-410 订阅
排序:
Two-Stage Representation Refinement Based on Convex Combination for 3-D Human Poses Estimation
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第12期5卷 6500-6508页
作者: Chen, Luefeng Cao, Wei Zheng, Biao Wu, Min Pedrycz, Witold Hirota, Kaoru China University of Geosciences School of Automation Wuhan430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan430074 China Ministry of Education Engineering Research Center of Intelligent Technology for Geo-Exploration Wuhan430074 China University of Alberta Department of Electrical and Computer Engineering EdmontonABT6G 2R3 Canada Macau University of Science and Technology Institute of Systems Engineering Taipa999078 China Istinye University Research Center of Performance and Productivity Analysis Istanbul34010 Turkey Tokyo Institute of Technology Yokohama226-8502 Japan
In the human pose estimation task, on the one hand, 3-D pose always has difficulty in dividing different 2-D poses if the view is limited;on the other hand, it is hard to reduce the lifting ambiguity because of the la... 详细信息
来源: 评论
DeepTQ: Predictive TSN Switch Queue Length Based on Deep Learning  1
收藏 引用
7th Chinese Conference on Swarm Intelligence and Cooperative control, CCSICC 2023
作者: Jia, Yanxin Xu, Long Xiong, Wei Wang, Xin Shang, Zhijun Yuan, Zijun 3onedata Co. Ltd. Shenzhen China Ministry of Education School of Automation and the Key Laboratory of Measurement and Control of Complex Systems of Engineering Southeast University Nanjing China 3onedata Qitong Co. Ltd. Shanghai China University of Chinese Academy of Sciences Beijing China
With the rapid development of network technology, TSN (Time-Sensitive Networking) is in the stage of rapid development. It needs to ensure the deterministic transmission of time-sensitive flow, further improve the net... 详细信息
来源: 评论
ResFFont: Few-Shot Font Generation based on Reversible Network  43
ResFFont: Few-Shot Font Generation based on Reversible Netwo...
收藏 引用
43rd Chinese control Conference, CCC 2024
作者: Ju, Chuanying Zhang, Ziying Chen, Xin China University of Geosciences School of Automation Wuhan430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan430074 China China University of Geosciences School of Arts and Communication Wuhan430073 China
The technique of generating fonts with few-shot learning has become a popular research topic. The goal of this technique is to transform the source-to-target domain by using a small number of sample images to generate... 详细信息
来源: 评论
An Improved Task Planning Method for Unmanned Swarms with Coupled Physical and Logical Constraints
An Improved Task Planning Method for Unmanned Swarms with Co...
收藏 引用
2024 IEEE International Conference on Unmanned systems, ICUS 2024
作者: Chen, Xiubin Zhang, Lei Xu, Fang Yao, Weiran School of Astronautics Harbin Institude of Technology Harbin China Wuhan 2nd Ship Design and Research Institute Wuhan China Marine Military Intelligence Innovation Institute CSSC Systems Engineering Research Institute Beijing China National Key Laboratory of Complex System Control and Intelligent Agent Cooperation Beijing China
Traditional task allocation methods for unmanned swarm systems ignore the effects of actual paths, resulting in estimation accuracy *** paper formulates task planning problem by incorporating physical and logical cons... 详细信息
来源: 评论
Hardware-in-the-loop Simulation and Experimental System for Process control of Marine Resources Exploration  43
Hardware-in-the-loop Simulation and Experimental System for ...
收藏 引用
43rd Chinese control Conference, CCC 2024
作者: Wang, Zeyi Wang, Chenxuan Ma, Zhejiaqi Zeng, Kanghui Lu, Chengda Wang, Yawu Wu, Min China University of Geosciences School of Automation Wuhan430074 China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Wuhan430074 China Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan430074 China China University of Geosciences School of Future Technology Wuhan430074 China
Effective control techniques are essential for offshore platform systems to suppress disturbances caused by the complex marine environment and ensure the stable operation of the systems during the exploration of marin... 详细信息
来源: 评论
Effective Indoor Fire Detection with Channel Shuffle Module  21
Effective Indoor Fire Detection with Channel Shuffle Module
收藏 引用
5th International Conference on Computer Science and Application engineering, CSAE 2021
作者: Ge, Haotian Cao, Yichao Lu, Xiaobo School of Automation Southeast University Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education Nanjing China
In recent years, methods based on computer vision and deep learning become the mainstream approaches in fire detection. However, the expensive computation cost of 3D convolutional neutral network (CNN) is unbearable a... 详细信息
来源: 评论
CDP-GAN:Near-Infrared and Visible Image Fusion Via Color Distribution Preserved GAN
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第9期9卷 1698-1701页
作者: Jun Chen Kangle Wu Yang Yu Linbo Luo the School of Automation Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex SystemsEngineering Research Center of Intelligent Technology for Geo-ExplorationMinistry of EducationChina University of GeosciencesWuhan 430074China the Shanghai Institute of Technical Physics Key Laboratory of Infrared System Detecting and Imaging TechnologyChinese Academy of SciencesShanghai 200083China the School of Mechanical Engineering and Electronic Information China University of GeosciencesWuhan 430074China
Dear Editor,This letter is concerned with dealing with the great discrepancy between near-infrared(NIR)and visible(VS)image fusion via color distribution preserved generative adversarial network(CDP-GAN).Different fro... 详细信息
来源: 评论
A Two-step Model for Multi-object Tracking  21
A Two-step Model for Multi-object Tracking
收藏 引用
5th International Conference on Computer Science and Application engineering, CSAE 2021
作者: Zhang, Shuaishuai Lu, Xiaobo Du, Songlin Southeast University Key Laboratory of Measurement and Control of Complex Systems of EngineeringMinistry of Education School of Automation Nanjing China
Multi-object tracking is widely used in video analysis. However, due to the limitation of detector performance, many multi-object tracking models have the problem of detecting two objects into one object in some occlu... 详细信息
来源: 评论
Multi Scale Attention Network for Crowd Counting  21
Multi Scale Attention Network for Crowd Counting
收藏 引用
5th International Conference on Computer Science and Application engineering, CSAE 2021
作者: Yang, Xiangpeng Lu, Xiaobo Key Laboratory of Measurement and Control of Complex Systems of Engineering School of Automation Southeast University Ministry of Education Nanjing China
Reasonable management and control of extra crowded scenes have become a hot topic in recent years. Counting people from density map generated from the object location annotations is an effective way to analyze crowd i... 详细信息
来源: 评论
Skeleton-based Action Recognition Using Two-stream Graph Convolutional Network with Pose Refinement  41
Skeleton-based Action Recognition Using Two-stream Graph Con...
收藏 引用
第41届中国控制会议
作者: Biao Zheng Luefeng Chen Min Wu Witold Pedrycz Kaoru Hirota School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Department of Electrical and Computer Engineering University of Alberta Tokyo Institute of Technology
With the development of science and technology,graph convolutional network has made great progress in improving the accuracy of action ***,there still exists some deficiencies in current ***,the human skeleton point c... 详细信息
来源: 评论