Controlling sophisticated motion by molecular motors is a major goal on the road to future actuators and soft robotics. Taking inspiration from biological motility and mechanical functions common to artificial machine...
详细信息
Controlling sophisticated motion by molecular motors is a major goal on the road to future actuators and soft robotics. Taking inspiration from biological motility and mechanical functions common to artificial machines, responsive small molecules have been used to achieve macroscopic effects, however, translating molecular movement along length scales to precisely defined linear, twisting and rotary motions remain particularly challenging. Here, we present the design, synthesis and functioning of liquid-crystal network (LCN) materials with intrinsic rotary motors that allow the conversion of light energy into reversible helical motion. In this responsive system the photochemical-driven molecular motor has a dual function operating both as chiral dopant and unidirectional rotor amplifying molecular motion into a controlled and reversible left- or right-handed macroscopic twisting movement. By exploiting the dynamic chirality, directionality of motion and shape change of a single motor embedded in an LC-network, complex mechanical motions including bending, walking and helical motion, in soft polymer materials are achieved which offers fascinating opportunities toward inherently photo-responsive materials.
Mechanochromic photonic polymers, which can change structural color upon mechanical deformation, are promising for many applications including strain/stress sensors and security features. Here, a patterned poly(dimeth...
详细信息
Mechanochromic photonic polymers, which can change structural color upon mechanical deformation, are promising for many applications including strain/stress sensors and security features. Here, a patterned poly(dimethylsiloxane) (PDMS)/cholesteric liquid crystal elastomer (CLCE) photonic mechanochromic bilayer film for reversible image reveal is reported, in which the PDMS component determines the mechanical properties and the CLCE determines the mechanochromic properties. The structural color pattern is achieved by locally crosslinking the CLCE layer at different temperatures using a photomask and utilizing the temperature response of the cholesteric liquid crystal main‐chain oligomers. The resulting PDMS/CLCE bilayer is able to reversibly reveal the predesigned invisible pattern upon stretching, showing that this method can be used to convey more advanced information to a potential user than would be possible with a simple homogeneous color change. It is also demonstrated that the bilayer film can be used as a stimuli‐responsive sticker able to detect bending deformations.
The original version of this Article omitted the following from the Acknowledgements:'J.D. and H. Zhang acknowledge initial funding for design of the meta-atoms provided by the National Science Foundation under aw...
The original version of this Article omitted the following from the Acknowledgements:'J.D. and H. Zhang acknowledge initial funding for design of the meta-atoms provided by the National Science Foundation under award CMMI-1266251. Z.L. and H. Zheng contributed to the Device Fabrication section and were independently funded as visiting scholars by the National Natural Science Foundation of China under award 51772042 and the "111" project (No. B13042) led by Professor Huaiwu Zhang. Later work contained within the Device Modeling and Device Characterization sections and some revisions to the manuscript were funded under Defense Advanced Research Projects Agency Defense Sciences Office (DSO) Program: EXTREME Optics and Imaging (EXTREME) under Agreement No. HR00111720029. The authors also acknowledge fabrication facility support by the Harvard University Center for Nanoscale Systems funded by the National Science Foundation under award 0335765. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.' This has been corrected in both the PDF and HTML versions of the Article.
The originally published version of this Article contained an error in Equation 1. The two ℏ terms were missing from this equation. This has now been corrected in the PDF and HTML versions of the Article.
The originally published version of this Article contained an error in Equation 1. The two ℏ terms were missing from this equation. This has now been corrected in the PDF and HTML versions of the Article.
暂无评论