咨询与建议

限定检索结果

文献类型

  • 914 篇 会议
  • 649 篇 期刊文献

馆藏范围

  • 1,563 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 997 篇 工学
    • 540 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 305 篇 控制科学与工程
    • 160 篇 电气工程
    • 151 篇 信息与通信工程
    • 139 篇 机械工程
    • 119 篇 生物工程
    • 107 篇 生物医学工程(可授...
    • 105 篇 电子科学与技术(可...
    • 95 篇 光学工程
    • 56 篇 化学工程与技术
    • 52 篇 仪器科学与技术
    • 44 篇 交通运输工程
    • 41 篇 动力工程及工程热...
    • 30 篇 航空宇航科学与技...
    • 29 篇 力学(可授工学、理...
    • 22 篇 土木工程
  • 614 篇 理学
    • 367 篇 数学
    • 141 篇 物理学
    • 127 篇 生物学
    • 117 篇 系统科学
    • 97 篇 统计学(可授理学、...
    • 52 篇 化学
  • 227 篇 管理学
    • 167 篇 管理科学与工程(可...
    • 66 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 58 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 19 篇 经济学
  • 12 篇 教育学
  • 12 篇 农学
  • 7 篇 军事学
  • 6 篇 文学
  • 2 篇 艺术学

主题

  • 48 篇 feature extracti...
  • 40 篇 training
  • 26 篇 object detection
  • 25 篇 image segmentati...
  • 23 篇 multi-agent syst...
  • 21 篇 computational mo...
  • 20 篇 deep learning
  • 20 篇 simulation
  • 20 篇 optimization
  • 20 篇 accuracy
  • 20 篇 multi agent syst...
  • 19 篇 support vector m...
  • 19 篇 stability analys...
  • 19 篇 semantics
  • 19 篇 machine learning
  • 17 篇 target tracking
  • 16 篇 electroencephalo...
  • 16 篇 neural networks
  • 16 篇 real-time system...
  • 16 篇 robustness

机构

  • 116 篇 shanghai enginee...
  • 114 篇 department of au...
  • 113 篇 key laboratory o...
  • 82 篇 school of artifi...
  • 57 篇 school of automa...
  • 48 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 31 篇 key laboratory o...
  • 30 篇 shenzhen huazhon...
  • 26 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 22 篇 department of au...
  • 20 篇 institute of ima...
  • 20 篇 department of co...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 ministry of educ...
  • 16 篇 shanghai jiao to...

作者

  • 60 篇 wu dongrui
  • 49 篇 zeng zhigang
  • 44 篇 zhigang zeng
  • 36 篇 ding mingyue
  • 33 篇 jiao licheng
  • 32 篇 mingyue ding
  • 31 篇 licheng jiao
  • 31 篇 cao zhiguo
  • 31 篇 wang hesheng
  • 30 篇 guan xinping
  • 28 篇 chen cailian
  • 27 篇 xi li
  • 26 篇 housheng su
  • 25 篇 su housheng
  • 23 篇 sang nong
  • 23 篇 jian huang
  • 21 篇 jie yang
  • 21 篇 wang guangming
  • 21 篇 yongji wang
  • 20 篇 hesheng wang

语言

  • 1,322 篇 英文
  • 204 篇 其他
  • 43 篇 中文
检索条件"机构=Key Laboratory of Ministry of Education for Image Processing and Intelligent Control"
1563 条 记 录,以下是491-500 订阅
排序:
EMPIRICAL STUDIES ON THE PROPERTIES OF LINEAR REGIONS IN DEEP NEURAL NETWORKS  8
EMPIRICAL STUDIES ON THE PROPERTIES OF LINEAR REGIONS IN DEE...
收藏 引用
8th International Conference on Learning Representations, ICLR 2020
作者: Zhang, Xiao Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
A deep neural network (DNN) with piecewise linear activations can partition the input space into numerous small linear regions, where different linear functions are fitted. It is believed that the number of these regi... 详细信息
来源: 评论
Virtually-Federated Scheduling of Parallel Real-Time Tasks  42
Virtually-Federated Scheduling of Parallel Real-Time Tasks
收藏 引用
42nd IEEE Real-Time Systems Symposium, RTSS 2021
作者: Jiang, Xu Guan, Nan Liang, Haochun Tang, Yue Qiao, Lei Yi, Wang Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University China City University of Hong Kong Hong Kong Beijing Institute of Control Engineering China Uppsala University Sweden
Federated scheduling is a promising approach to schedule parallel real-time tasks, where each task exclusively executes on a set of dedicated processors. However, federated scheduling suffers significant resource wast... 详细信息
来源: 评论
Generative Adversarial Network-Based Electromagnetic Signal Classification: A Semi- Supervised Learning Framework
收藏 引用
China Communications 2020年 第10期17卷 157-169页
作者: Huaji Zhou Licheng Jiao Shilian Zheng Lifeng Yang Weiguo Shen Xiaoniu Yang Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education School of Artificial IntelligenceXidian UniversityXi'an 710071China Science and Technology on Communication Information Security Control Laboratory Jiaxing 314033China
Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic *** ... 详细信息
来源: 评论
Parameter training methods for convolutional neural networks with adaptive adjustment method based on Caputo fractional-order differences
收藏 引用
Chaos, Solitons and Fractals 2025年 199卷
作者: Zhao, Haiming Yang, Honggang Chen, Jiejie Jiang, Ping Zeng, Zhigang School of Computer and Information Engineering Hubei Normal University Huangshi435000 China School of Automation Wuhan University of Technology Wuhan430000 China School of Computer Hubei Polytechnic University Huangshi435000 China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430000 China Key Laboratory of Image Information Processing and Intelligent Control Ministry of Education of China Wuhan430000 China
As deep learning technologies continue to permeate various sectors, optimization algorithms have become increasingly crucial in neural network training. This paper introduces two adaptive momentum algorithms based on ... 详细信息
来源: 评论
A Single-Cell Clustering Algorithm Based on Structure Perturbation Non-Negative Matrix Factorization
A Single-Cell Clustering Algorithm Based on Structure Pertur...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Jiang, Hanjing Wang, Meineng Zhang, Luping Huang, Yu-An Li, Yangyuan Huang, Yabing Huazhong University of Science and Technology Key Laboratory of Image Information Processing and Intelligent Control Education Ministry of China Institute of Artificial Intelligence School of Artificial Intelligence and Automation Hubei Wuhan430074 China China University of Mining and Technology School of Computer Science and Technology Xuzhou221116 China Yichun University School of Mathematics and Computer Science Yichun336000 China East China University of Technology School of Information Engineering Nanchang330013 China Northwestern Polytechnical University School of Computer Science Xi'an710129 China Renmin Hospital Wuhan University Department of Pathology Wuhan430060 China
The advent of single-cell RNA sequencing (scRNA-seq) has facilitated the acquisition of high-resolution data regarding cell heterogeneity across various tissues. A fundamental and critical step in the analysis of scRN... 详细信息
来源: 评论
Object relationship graph reasoning for object detection of remote sensing images  6
Object relationship graph reasoning for object detection of ...
收藏 引用
6th International Conference on image, Vision and Computing, ICIVC 2021
作者: Li, Zeng Liu, Yifan Liu, Jingdong Yuan, Ye Raza, Asif Huo, Hong Fang, Tao Department of Automation Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai China
In recent years, deep learning has been successfully applied in object detection of remote sensing images, due to its powerful feature extraction and representation capabilities. However, it usually ignores the relati... 详细信息
来源: 评论
Learning from Noisy Labels with Coarse-to-Fine Sample Credibility Modeling
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Boshen Li, Yuxi Tu, Yuanpeng Peng, Jinlong Wang, Yabiao Wu, Cunlin Xiao, Yang Zhao, Cairong YouTu Lab Tencent Shanghai China Tongji University Shanghai China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China
Training deep neural network (DNN) with noisy labels is practically challenging since inaccurate labels severely degrade the generalization ability of DNN. Previous efforts tend to handle part or full data in a unifie... 详细信息
来源: 评论
Multi-target tracking control system of phased array antenna with mechanical scanning and beam scanning method
Multi-target tracking control system of phased array antenna...
收藏 引用
Fully Actuated System Theory and Applications (CFASTA), Conference on
作者: Jijun Ma Dewei Li Lianghai Li Shibei Xue Yuning Wang Jun Jia Department of Automation Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai China Beijing Research Institute of Telemetry Beijing China
In the field of telemetry, track, and command system, this study presents a phased array antenna control system for achieving multi-target tracking tasks through a set of systems. Firstly, electric beam scanning of a ...
来源: 评论
Differentiator-Based Adaptive H∞ Tracking control of Fully Actuated Systems
Differentiator-Based Adaptive H∞ Tracking Control of Fully ...
收藏 引用
Fully Actuated System Theory and Applications (CFASTA), Conference on
作者: Yuxin Feng Zhiqiang Li Yang Liu Zhaoshui He Hongyi Li School of Automation and Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control Guangdong University of Technology Guangzhou China School of Automation and Electronics Engineering Qingdao University of Science and Technology Qingdao China School of Automation Guangdong University of Technology Guangzhou China Key Laboratory for IoT Intelligent Information Processing and System Integration of Ministry of Education Guangzhou China
This article addresses an adaptive tracking control problem for uncertain high-order fully actuated (HOFA) systems with unknown parameters and disturbances. Under the framework of backstepping, the unknown parameter i... 详细信息
来源: 评论
CrossGLG: LLM Guides One-shot Skeleton-based 3D Action Recognition in a Cross-level Manner
arXiv
收藏 引用
arXiv 2024年
作者: Yan, Tingbing Zeng, Wenzheng Xiao, Yang Tong, Xingyu Tan, Bo Fang, Zhiwen Cao, Zhiguo Zhou, Joey Tianyi Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China School of Biomedical Engineering Southern Medical University Guangzhou510515 China Department of Rehabilitation Medicine Zhujiang Hospital Southern Medical University Guangzhou510280 China Singapore Singapore Singapore Singapore
Most existing one-shot skeleton-based action recognition focuses on raw low-level information (e.g., joint location), and may suffer from local information loss and low generalization ability. To alleviate these, we p... 详细信息
来源: 评论