咨询与建议

限定检索结果

文献类型

  • 912 篇 会议
  • 646 篇 期刊文献

馆藏范围

  • 1,558 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 992 篇 工学
    • 539 篇 计算机科学与技术...
    • 473 篇 软件工程
    • 297 篇 控制科学与工程
    • 157 篇 电气工程
    • 149 篇 信息与通信工程
    • 137 篇 机械工程
    • 120 篇 生物工程
    • 108 篇 生物医学工程(可授...
    • 104 篇 电子科学与技术(可...
    • 96 篇 光学工程
    • 54 篇 化学工程与技术
    • 51 篇 仪器科学与技术
    • 44 篇 交通运输工程
    • 36 篇 动力工程及工程热...
    • 30 篇 航空宇航科学与技...
    • 29 篇 力学(可授工学、理...
    • 22 篇 土木工程
  • 608 篇 理学
    • 362 篇 数学
    • 141 篇 物理学
    • 127 篇 生物学
    • 116 篇 系统科学
    • 97 篇 统计学(可授理学、...
    • 51 篇 化学
  • 228 篇 管理学
    • 167 篇 管理科学与工程(可...
    • 67 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 60 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 19 篇 经济学
  • 12 篇 教育学
  • 11 篇 农学
  • 7 篇 军事学
  • 6 篇 文学
  • 2 篇 艺术学

主题

  • 48 篇 feature extracti...
  • 39 篇 training
  • 26 篇 object detection
  • 25 篇 image segmentati...
  • 23 篇 multi-agent syst...
  • 21 篇 computational mo...
  • 20 篇 simulation
  • 20 篇 accuracy
  • 20 篇 multi agent syst...
  • 19 篇 support vector m...
  • 19 篇 deep learning
  • 19 篇 optimization
  • 19 篇 semantics
  • 19 篇 machine learning
  • 18 篇 electroencephalo...
  • 18 篇 stability analys...
  • 17 篇 robustness
  • 16 篇 target tracking
  • 16 篇 neural networks
  • 16 篇 real-time system...

机构

  • 113 篇 shanghai enginee...
  • 112 篇 department of au...
  • 111 篇 key laboratory o...
  • 82 篇 school of artifi...
  • 57 篇 school of automa...
  • 48 篇 key laboratory o...
  • 41 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 31 篇 shenzhen huazhon...
  • 30 篇 key laboratory o...
  • 26 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 22 篇 department of au...
  • 20 篇 institute of ima...
  • 20 篇 department of co...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 ministry of educ...
  • 16 篇 shanghai jiao to...

作者

  • 61 篇 wu dongrui
  • 50 篇 zeng zhigang
  • 45 篇 zhigang zeng
  • 36 篇 ding mingyue
  • 33 篇 jiao licheng
  • 32 篇 cao zhiguo
  • 32 篇 mingyue ding
  • 31 篇 licheng jiao
  • 31 篇 wang hesheng
  • 30 篇 guan xinping
  • 28 篇 chen cailian
  • 26 篇 housheng su
  • 26 篇 xi li
  • 25 篇 su housheng
  • 23 篇 sang nong
  • 22 篇 jian huang
  • 21 篇 wang guangming
  • 21 篇 yongji wang
  • 20 篇 jie yang
  • 20 篇 hesheng wang

语言

  • 1,451 篇 英文
  • 70 篇 其他
  • 39 篇 中文
检索条件"机构=Key Laboratory of Ministry of Education for Image Processing and Intelligent Control"
1558 条 记 录,以下是821-830 订阅
排序:
Bioimage-based protein subcellular location prediction: a comprehensive review
收藏 引用
Frontiers of Computer Science 2018年 第1期12卷 26-39页
作者: Ying-Ying XU Li-Xiu YAO Hong-Bin SHEN Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai 200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai 200240 China
Subcellular localization of proteins can provide key hints to infer their functions and structures in cells. With the breakthrough of recent molecule imaging techniques, the usage of 2D bioimages has become increasing... 详细信息
来源: 评论
Interdependence between individual and social learning shapes cooperation with asymmetric exploration
arXiv
收藏 引用
arXiv 2025年
作者: Hou, Zhihao She, Zhikun Liang, Quanyi Su, Qi Li, Daqing School of Mathematical Sciences Beihang University Beijing100191 China Department of Automation Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China School of Reliability and Systems Engineering Beihang University Beijing100083 China
Cooperation on social networks is crucial for understanding human survival and development. Although network structure has been found to significantly influence cooperation, some human experiments indicate that it can... 详细信息
来源: 评论
Tigc-Net: Transformer-Improved Graph Convolution Network for Spatio-Temporal Prediction
SSRN
收藏 引用
SSRN 2022年
作者: Chen, Kai Yang, Chunfeng Zhou, Zhengyuan Liu, Yao Ji, Tianjiao Sun, Weiya Chen, Yang School of Cyber Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing210096 China The College of Software Engineering Southeast University Nanjing210096 China Laboratory of Image Science and Technology The School of Computer Science and Engineering Southeast University Nanjing210096 China Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology Zhongda Hospital Southeast University Nanjing210009 China Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing School of Computer Science and Engineering Southeast University Nanjing210096 China NHC Key Laboratory of Medical Virology and Viral Diseases National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing China Beijing Institute of Tracking and Communication Technology Beijing100094 China
Modeling spatio-temporal sequences is an important topic yet challenging for existing neural networks. Most of the current spatio-temporal sequence prediction methods usually capture features separately in temporal an... 详细信息
来源: 评论
Spatial non-locality induced non-markovian EIT in a single giant atom
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Y.T. Wu, R.B. Xue, S. Department of Automation Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China Department of Automation Tsinghua University Beijing100084 China Beijing National Research Center for Information Science and Technology Beijing100084 China
In recent experiments, electromagnetically induced transparency (EIT) were observed with giant atoms, but nothing unconventional were found from the transmission spectra. In this letter, we show that unconventional EI... 详细信息
来源: 评论
Channel and Trials Selection for Reducing Covariate Shift in EEG-based Brain-Computer Interfaces
Channel and Trials Selection for Reducing Covariate Shift in...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: He He Dongrui Wu Key Laboratory for Image Processing and Intelligent Control Ministry of Education and the School of Artificial Intelligence and Automation Huazhong University of Science and Technology
This paper aims at reducing the calibration effort of EEG-based brain-computer interfaces (BCIs). More specifically, in the context of cross-subject classification, we correct covariate shift of EEG data from differen... 详细信息
来源: 评论
Deep reinforcement learning with a stage incentive mechanism of dense reward for robotic trajectory planning
arXiv
收藏 引用
arXiv 2020年
作者: Peng, Gang Yang, Jin Khyam, Mohammad Omar Key Laboratory of Image Processing and Intelligent Control Ministry of EducationB School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China School of Automation South East University Nanjing China School of Engineering and Technology Central Queensland University Melbourne Australia
To improve the efficiency of deep reinforcement learning (DRL)-based methods for robot manipulator trajectory planning in random working environments, we present three dense reward functions. These rewards differ from... 详细信息
来源: 评论
BoostTree and BoostForest for Ensemble Learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhao, Changming Wu, Dongrui Huang, Jian Yuan, Ye Zhang, Hai-Tao Peng, Ruimin Shi, Zhenhua Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen China The Autonomous Intelligence Unmanned Systems Engineering Research Center of Ministry of Education of China The State Key Lab of Digital Manufacturing Equipment and Technology Wuhan China
Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have ... 详细信息
来源: 评论
Observer-Based Robust Containment control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
Chinese control Conference (CCC)
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunications and Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) Nanjing PR China School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry ofChina Huazhong University of Science and Technology Wuhan PR China
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
Spherical interpolated convolutional network with distance-feature density for 3D semantic segmentation of point clouds
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Guangming Yang, Yehui Zhang, Huixin Liu, Zhe Wang, Hesheng Department of Automation Insititue of Medical Robotics Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing Institute of Technology China Department of Computer Science and Technology University of Cambridge United Kingdom
The semantic segmentation of point clouds is an important part of the environment perception for robots. However, it is difficult to directly adopt the traditional 3D convolution kernel to extract features from raw 3D... 详细信息
来源: 评论
Pining control Algorithm for Complex Networks
Pining Control Algorithm for Complex Networks
收藏 引用
第三十八届中国控制会议
作者: Bingjun Wang Hui Liu Jiangnqiao Xu Jiaqi Liu School of Artificial Intelligence and Automation & Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Huazhong University of Science and Technology
In this paper, we quote the concept of resistance distance for Pinning control, and discuss the relationship between the upper bound of the minimum eigenvalue of the grounded Laplacian Matrix and the resistance distan... 详细信息
来源: 评论