咨询与建议

限定检索结果

文献类型

  • 204 篇 期刊文献
  • 170 篇 会议

馆藏范围

  • 374 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 192 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 49 篇 信息与通信工程
    • 29 篇 控制科学与工程
    • 22 篇 光学工程
    • 18 篇 机械工程
    • 16 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 网络空间安全
    • 13 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 测绘科学与技术
    • 11 篇 生物工程
    • 10 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 动力工程及工程热...
  • 76 篇 管理学
    • 43 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 67 篇 理学
    • 35 篇 数学
    • 17 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 12 篇 生物学
    • 10 篇 化学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
    • 3 篇 法学
  • 2 篇 农学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 15 篇 semantics
  • 12 篇 image segmentati...
  • 10 篇 training
  • 9 篇 reinforcement le...
  • 9 篇 contrastive lear...
  • 8 篇 visual languages
  • 7 篇 speech processin...
  • 7 篇 convolution
  • 7 篇 computer vision
  • 7 篇 image reconstruc...
  • 6 篇 semantic segment...
  • 6 篇 distillation
  • 6 篇 visualization
  • 6 篇 pipelines
  • 5 篇 costs
  • 5 篇 benchmarking
  • 5 篇 codes
  • 4 篇 object detection
  • 4 篇 signal processin...
  • 4 篇 redundancy

机构

  • 214 篇 key laboratory o...
  • 62 篇 institute of art...
  • 40 篇 key laboratory o...
  • 36 篇 tencent youtu la...
  • 33 篇 peng cheng labor...
  • 32 篇 school of inform...
  • 25 篇 key laboratory o...
  • 22 篇 fujian key labor...
  • 20 篇 fujian key labor...
  • 18 篇 youtu lab tencen...
  • 17 篇 key laboratory o...
  • 10 篇 school of inform...
  • 10 篇 national univers...
  • 8 篇 tencent
  • 8 篇 skywork ai
  • 8 篇 school of comput...
  • 8 篇 the key laborato...
  • 8 篇 department of ar...
  • 7 篇 key laboratory o...
  • 6 篇 department of co...

作者

  • 152 篇 ji rongrong
  • 67 篇 sun xiaoshuai
  • 49 篇 rongrong ji
  • 40 篇 cao liujuan
  • 37 篇 ji jiayi
  • 30 篇 zhou yiyi
  • 30 篇 zhang shengchuan
  • 28 篇 wang cheng
  • 25 篇 ma yiwei
  • 24 篇 zhang yuxin
  • 24 篇 zheng xiawu
  • 22 篇 chao fei
  • 19 篇 luo gen
  • 18 篇 lin mingbao
  • 18 篇 zhang yan
  • 17 篇 xiaoshuai sun
  • 16 篇 wang haowei
  • 15 篇 shen yunhang
  • 15 篇 jiang guannan
  • 15 篇 li hui

语言

  • 318 篇 英文
  • 56 篇 其他
检索条件"机构=Key Laboratory of Multimedia Trusted Perception and Efficient Computing"
374 条 记 录,以下是291-300 订阅
排序:
Federated graph learning for cross-domain recommendation  24
Federated graph learning for cross-domain recommendation
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Ziqi Yang Zhaopeng Peng Zihui Wang Jianzhong Qi Chaochao Chen Weike Pan Chenglu Wen Cheng Wang Xiaoliang Fan Fujian Key Laboratory of Sensing and Computing for Smart Cities Xiamen University China and Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China School of Computing and Information Systems The University of Melbourne Australia College of Computer Science and Technology Zhejiang University Hangzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
Cross-domain recommendation (CDR) offers a promising solution to the data sparsity problem by enabling knowledge transfer between source and target domains. However, many recent CDR models overlook crucial issues such...
来源: 评论
DiffAgent: Fast and Accurate Text-to-Image API Selection with Large Language Model
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Lirui Yang, Yue Zhang, Kaipeng Shao, Wenqi Zhang, Yuxin Qiao, Yu Luo, Ping Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China OpenGVLab Shanghai AI Laboratory China The University of Hong Kong Hong Kong Institute of Artificial Intelligence Xiamen University China Shanghai Jiao Tong University China
Text-to-image (T2I) generative models have attracted significant attention and found extensive applications within and beyond academic research. For example, the Civitai community, a platform for T2I innovation, curre... 详细信息
来源: 评论
Cheap and Quick: efficient Vision-Language Instruction Tuning for Large Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Luo, Gen Zhou, Yiyi Ren, Tianhe Chen, Shengxin Sun, Xiaoshuai Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China School of Informatics Xiamen University 361005 China Institute of Artificial Intelligence Xiamen University 361005 China Peng Cheng Laboratory Shenzhen518000 China
Recently, growing interest has been aroused in extending the multimodal capability of large language models (LLMs), e.g., vision-language (VL) learning, which is regarded as the next milestone of artificial general in... 详细信息
来源: 评论
Aligning and Prompting Everything All at Once for Universal Visual perception
arXiv
收藏 引用
arXiv 2023年
作者: Shen, Yunhang Fu, Chaoyou Chen, Peixian Zhang, Mengdan Li, Ke Sun, Xing Wu, Yunsheng Lin, Shaohui Ji, Rongrong Tencent Youtu Lab China School of Computer Science and Technology East China Normal University Shanghai China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China
Vision foundation models have been explored recently to build general-purpose vision systems. However, predominant paradigms, driven by casting instance-level tasks as an object-word alignment, bring heavy cross-modal... 详细信息
来源: 评论
Adapting Pre-trained Language Models to Vision-Language Tasksvia Dynamic Visual Prompting
Adapting Pre-trained Language Models to Vision-Language Task...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Shubin Huang Qiong Wu Yiyi Zhou Ministry of Education of China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Xiamen University P.R. China School of Information Xiamen University P.R. China Institute of Artificial Intelligence Xiamen University P.R. China
Pre-trained language models (PLMs) have played an increasing role in vision-language (VL) learning, but they usually require a deep multi-modal branch for VL reasoning, resulting in excessive computation and memory ov... 详细信息
来源: 评论
Weakly Supervised Open-Vocabulary Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Jianghang Shen, Yunhang Wang, Bingquan Lin, Shaohui Li, Ke Cao, Liujuan Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Tencent Youtu Lab China School of Computer Science and Technology East China Normal University Shanghai China
Despite weakly supervised object detection (WSOD) being a promising step toward evading strong instance-level annotations, its capability is confined to closed-set categories within a single training dataset. In this ... 详细信息
来源: 评论
Deep Instruction Tuning for Segment Anything Model
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Xiaorui Luo, Gen Zhu, Chaoyang Tong, Bo Zhou, Yiyi Sun, Xiaoshuai Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University 361005 China Institute of Artificial Intelligence Xiamen University 361005 China The Department of Computer Science and Engineering The Hong Kong University of Science and Technology Kowloon Hong Kong
Recently, Segment Anything Model (SAM) has become a research hotspot in the fields of multimedia and computer vision, which exhibits powerful yet versatile capabilities on various (un) conditional image segmentation t... 详细信息
来源: 评论
Diverse Embedding Expansion Network and Low-Light Cross-Modality Benchmark for Visible-Infrared Person Re-identification
Diverse Embedding Expansion Network and Low-Light Cross-Moda...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yukang Zhang Hanzi Wang Fujian Key Laboratory of Sensing and Computing for Smart City School of Informatics Xiamen University P.R. China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University P.R. China Shanghai Artificial Intelligence Laboratory Shanghai China
For the visible-infrared person re-identification (VIReID) task, one of the major challenges is the modality gaps between visible (VIS) and infrared (IR) images. However, the training samples are usually limited, whil...
来源: 评论
Optg: Optimizing Gradient-Driven Criteria in Network Sparsity
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Yuxin Lin, Mingbao Chen, Mengzhao Chao, Fei Tian, Yonghong Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Tecent Youtu Lab China Department of Computer Science and Technology Peking University China Peng Cheng Laboratory China Department of Artificial Intelligence School of Informatics Xiamen University China
Network sparsity receives popularity mostly due to its capability to reduce the complexity of the network. Extensive studies excavate gradient-driven sparsity. Typically, these methods are constructed upon the premise... 详细信息
来源: 评论
Federated Graph Learning for Cross-Domain Recommendation
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ziqi Peng, Zhaopeng Wang, Zihui Qi, Jianzhong Chen, Chaochao Pan, Weike Wen, Chenglu Wang, Cheng Fan, Xiaoliang Fujian Key Laboratory of Sensing and Computing for Smart Cities Xiamen University China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China School of Computing and Information Systems The University of Melbourne Australia College of Computer Science and Technology Zhejiang University Hangzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
Cross-domain recommendation (CDR) offers a promising solution to the data sparsity problem by enabling knowledge transfer across source and target domains. However, many recent CDR models overlook crucial issues such ... 详细信息
来源: 评论