咨询与建议

限定检索结果

文献类型

  • 199 篇 期刊文献
  • 158 篇 会议

馆藏范围

  • 357 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 191 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 49 篇 信息与通信工程
    • 29 篇 控制科学与工程
    • 22 篇 光学工程
    • 18 篇 机械工程
    • 16 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 网络空间安全
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 测绘科学与技术
    • 11 篇 生物工程
    • 10 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 动力工程及工程热...
  • 76 篇 管理学
    • 43 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 67 篇 理学
    • 35 篇 数学
    • 17 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 12 篇 生物学
    • 10 篇 化学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
    • 3 篇 法学
  • 2 篇 农学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 14 篇 semantics
  • 12 篇 image segmentati...
  • 9 篇 reinforcement le...
  • 9 篇 contrastive lear...
  • 9 篇 training
  • 8 篇 visual languages
  • 7 篇 speech processin...
  • 7 篇 convolution
  • 7 篇 computer vision
  • 7 篇 image reconstruc...
  • 6 篇 semantic segment...
  • 6 篇 distillation
  • 6 篇 pipelines
  • 5 篇 visualization
  • 5 篇 costs
  • 5 篇 benchmarking
  • 5 篇 codes
  • 4 篇 object detection
  • 4 篇 signal processin...
  • 4 篇 redundancy

机构

  • 212 篇 key laboratory o...
  • 60 篇 institute of art...
  • 39 篇 key laboratory o...
  • 35 篇 tencent youtu la...
  • 31 篇 peng cheng labor...
  • 30 篇 school of inform...
  • 22 篇 fujian key labor...
  • 20 篇 fujian key labor...
  • 20 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 17 篇 youtu lab tencen...
  • 10 篇 school of inform...
  • 8 篇 tencent
  • 8 篇 skywork ai
  • 8 篇 school of comput...
  • 8 篇 the key laborato...
  • 7 篇 key laboratory o...
  • 7 篇 national univers...
  • 7 篇 department of ar...
  • 6 篇 shanghai jiao to...

作者

  • 151 篇 ji rongrong
  • 66 篇 sun xiaoshuai
  • 41 篇 rongrong ji
  • 39 篇 cao liujuan
  • 36 篇 ji jiayi
  • 30 篇 zhou yiyi
  • 30 篇 zhang shengchuan
  • 28 篇 wang cheng
  • 25 篇 ma yiwei
  • 24 篇 zhang yuxin
  • 24 篇 zheng xiawu
  • 22 篇 chao fei
  • 19 篇 luo gen
  • 18 篇 lin mingbao
  • 18 篇 zhang yan
  • 15 篇 shen yunhang
  • 15 篇 jiang guannan
  • 15 篇 wang haowei
  • 15 篇 li hui
  • 14 篇 wen chenglu

语言

  • 301 篇 英文
  • 56 篇 其他
检索条件"机构=Key Laboratory of Multimedia Trusted Perception and Efficient Computing"
357 条 记 录,以下是311-320 订阅
排序:
Feature Denoising Diffusion Model for Blind Image Quality Assessment
arXiv
收藏 引用
arXiv 2024年
作者: Li, Xudong Zheng, Jingyuan Hu, Runze Zhang, Yan Li, Ke Shen, Yunhang Zheng, Xiawu Liu, Yutao Zhang, ShengChuan Dai, Pingyang Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China School of Medicine Xiamen University China School of Information and Electronics Beijing Institute of Technology China Tencent Youtu Lab China School of Computer Science and Technology Ocean University of China China
Blind Image Quality Assessment (BIQA) aims to evaluate image quality in line with human perception, without reference benchmarks. Currently, deep learning BIQA methods typically depend on using features from high-leve... 详细信息
来源: 评论
JarvisIR: Elevating Autonomous Driving perception with Intelligent Image Restoration
arXiv
收藏 引用
arXiv 2025年
作者: Lin, Yunlong Lin, Zixu Chen, Haoyu Pan, Panwang Li, Chenxin Chen, Sixiang Jin, Yeying Li, Wenbo Ding, Xinghao Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Fujian Xiamen China The Hong Kong University of Science and Technology Guangzhou China Bytedance’s Pico China Tencent China Huawei Noah’s Ark Lab Hong Kong The Chinese University of Hong Kong Hong Kong
Vision-centric perception systems struggle with unpredictable and coupled weather degradations in the wild. Current solutions are often limited, as they either depend on specific degradation priors or suffer from sign... 详细信息
来源: 评论
DiffRate: Differentiable Compression Rate for efficient Vision Transformers
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Mengzhao Shao, Wenqi Xu, Peng Lin, Mingbao Zhang, Kaipeng Chao, Fei Ji, Rongrong Qiao, Yu Luo, Ping Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Institute of Artificial Intelligence Xiamen University China OpenGVLab Shanghai AI Laboratory China The University of Hong Kong Hong Kong Tencent Holdings Ltd. China
Token compression aims to speed up large-scale vision transformers (e.g. ViTs) by pruning (dropping) or merging tokens. It is an important but challenging task. Although recent advanced approaches achieved great succe... 详细信息
来源: 评论
One-for-More: Continual Diffusion Model for Anomaly Detection
arXiv
收藏 引用
arXiv 2025年
作者: Li, Xiaofan Tan, Xin Chen, Zhuo Zhang, Zhizhong Zhang, Ruixin Guo, Rizen Jiang, Guanna Chen, Yulong Qu, Yanyun Ma, Lizhuang Xie, Yuan East China Normal University China Shanghai Innovation Institute China Xiamen University China Shanghai Jiao Tong University China Tencent YouTu Lab China Tencent WeChatPay Lab33 China CATL China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China China
With the rise of generative models, there is a growing interest in unifying all tasks within a generative framework. Anomaly detection methods also fall into this scope and utilize diffusion models to generate or reco... 详细信息
来源: 评论
An efficient Dynamic Resource Allocation Framework for Evolutionary Bilevel Optimization
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Dejun Ye, Kai Zheng, Zimo Zhou, Tao Yen, Gary G. Jiang, Min Department of Artificial Intelligence School of Informatics Xiamen University Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan Ministry of Culture and Tourism Xiamen361005 China School of Electrical and Computer Engineering Oklahoma State University StillwaterOK74075 United States
Bilevel optimization problems are characterized by an interactive hierarchical structure, where the upper level seeks to optimize its strategy while simultaneously considering the response of the lower level. Evolutio... 详细信息
来源: 评论
E2PNet: event to point cloud registration with spatio-temporal representation learning  23
E2PNet: event to point cloud registration with spatio-tempor...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Xiuhong Lin Changjie Qiu Zhipeng Cai Siqi Shen Yu Zang Weiquan Liu Xuesheng Bian Matthias Müller Cheng Wang Fujian Key Lab of Sensing and Computing for Smart Cities School of Informatics Xiamen University (XMU) China and Key Laboratory of Multimedia Trusted Perception and Efficient Computing XMU China Intel Labs. Fujian Key Lab of Sensing and Computing for Smart Cities School of Informatics Xiamen University (XMU) China and Yancheng Institute Of Technology China Apple Inc.
Event cameras have emerged as a promising vision sensor in recent years due to their unparalleled temporal resolution and dynamic range. While registration of 2D RGB images to 3D point clouds is a long-standing proble...
来源: 评论
Adaptive feature selection for no-reference image quality assessment by mitigating semantic noise sensitivity  24
Adaptive feature selection for no-reference image quality as...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Xudong Li Timin Gao Runze Hu Yan Zhang Shengchuan Zhang Xiawu Zheng Jingyuan Zheng Yunhang Shen Ke Li Yutao Liu Pingyang Dai Rongrong Ji Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University P.R. China School of Information and Electronics Beijing Institute of Technology Beijing China School of Medicine Xiamen University Tencent Youtu Lab. School of Computer Science and Technology Ocean University of China
The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically rely on feature extraction from upstream semantic backbone networks, assuming that all extracted features are relevant. How...
来源: 评论
Shadow Removal by High-Quality Shadow Synthesis
arXiv
收藏 引用
arXiv 2022年
作者: Zhong, Yunshan You, Lizhou Zhang, Yuxin Chao, Fei Tian, Yonghong Ji, Rongrong Institute of Artificial Intelligence Department of Artificial Intelligence School of Informatics Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Xiamen361005 China Department of Artificial Intelligence School of Informatics Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Xiamen361005 China The Peng Cheng Laboratory Shenzhen518066 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Institute of Artificial Intelligence Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China China Xiamen University Xiamen361005 China The Peng Cheng Laboratory Shenzhen518000 China
Most shadow removal methods rely on the invasion of training images associated with laborious and lavish shadow region annotations, leading to the increasing popularity of shadow image synthesis. However, the poor per... 详细信息
来源: 评论
Automatic Network Pruning via Hilbert-Schmidt Independence Criterion Lasso under Information Bottleneck Principle
Automatic Network Pruning via Hilbert-Schmidt Independence C...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Song Guo Lei Zhang Xiawu Zheng Yan Wang Yuchao Li Fei Chao Chenglin Wu Shengchuan Zhang Rongrong Ji Department of Artificial Intelligence School of Informatics Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Peng Cheng Laboratory Samsara Inc Alibaba Group Deep Wisdom Inc Institute of Artificial Intelligence Xiamen University Fujian Engineering Research Center of Trusted Artificial Intelligence Analysis and Application Xiamen University
Most existing neural network pruning methods hand-crafted their importance criteria and structures to prune. This constructs heavy and unintended dependencies on heuristics and expert experience for both the objective...
来源: 评论
AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration
arXiv
收藏 引用
arXiv 2023年
作者: Li, Lijiang Li, Huixia Zheng, Xiawu Wu, Jie Xiao, Xuefeng Wang, Rui Zheng, Min Pan, Xin Chao, Fei Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Department of Artificial Intelligence School of Informatics Xiamen University China ByteDance Inc China Peng Cheng Laboratory China Institute of Artificial Intelligence Xiamen University China Fujian Engineering Research Center of Trusted Artificial Intelligence Analysis and Application Xiamen University China
Diffusion models are emerging expressive generative models, in which a large number of time steps (inference steps) are required for a single image generation. To accelerate such tedious process, reducing steps unifor... 详细信息
来源: 评论