咨询与建议

限定检索结果

文献类型

  • 199 篇 期刊文献
  • 158 篇 会议

馆藏范围

  • 357 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 233 篇 工学
    • 191 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 49 篇 信息与通信工程
    • 29 篇 控制科学与工程
    • 22 篇 光学工程
    • 18 篇 机械工程
    • 16 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 网络空间安全
    • 12 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 测绘科学与技术
    • 11 篇 生物工程
    • 10 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 动力工程及工程热...
  • 76 篇 管理学
    • 43 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 67 篇 理学
    • 35 篇 数学
    • 17 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 12 篇 生物学
    • 10 篇 化学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
    • 3 篇 法学
  • 2 篇 农学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 14 篇 semantics
  • 12 篇 image segmentati...
  • 9 篇 reinforcement le...
  • 9 篇 contrastive lear...
  • 9 篇 training
  • 8 篇 visual languages
  • 7 篇 speech processin...
  • 7 篇 convolution
  • 7 篇 computer vision
  • 7 篇 image reconstruc...
  • 6 篇 semantic segment...
  • 6 篇 distillation
  • 6 篇 pipelines
  • 5 篇 visualization
  • 5 篇 costs
  • 5 篇 benchmarking
  • 5 篇 codes
  • 4 篇 object detection
  • 4 篇 signal processin...
  • 4 篇 redundancy

机构

  • 212 篇 key laboratory o...
  • 60 篇 institute of art...
  • 39 篇 key laboratory o...
  • 35 篇 tencent youtu la...
  • 31 篇 peng cheng labor...
  • 30 篇 school of inform...
  • 22 篇 fujian key labor...
  • 20 篇 fujian key labor...
  • 20 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 17 篇 youtu lab tencen...
  • 10 篇 school of inform...
  • 8 篇 tencent
  • 8 篇 skywork ai
  • 8 篇 school of comput...
  • 8 篇 the key laborato...
  • 7 篇 key laboratory o...
  • 7 篇 national univers...
  • 7 篇 department of ar...
  • 6 篇 shanghai jiao to...

作者

  • 151 篇 ji rongrong
  • 66 篇 sun xiaoshuai
  • 41 篇 rongrong ji
  • 39 篇 cao liujuan
  • 36 篇 ji jiayi
  • 30 篇 zhou yiyi
  • 30 篇 zhang shengchuan
  • 28 篇 wang cheng
  • 25 篇 ma yiwei
  • 24 篇 zhang yuxin
  • 24 篇 zheng xiawu
  • 22 篇 chao fei
  • 19 篇 luo gen
  • 18 篇 lin mingbao
  • 18 篇 zhang yan
  • 15 篇 shen yunhang
  • 15 篇 jiang guannan
  • 15 篇 wang haowei
  • 15 篇 li hui
  • 14 篇 wen chenglu

语言

  • 301 篇 英文
  • 56 篇 其他
检索条件"机构=Key Laboratory of Multimedia Trusted Perception and Efficient Computing"
357 条 记 录,以下是351-360 订阅
排序:
Towards Language-guided Visual Recognition via Dynamic Convolutions
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Gen Zhou, Yiyi Sun, Xiaoshuai Wu, Yongjian Gao, Yue Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University 361005 China Institute of Artificial Intelligence Xiamen University 361005 China Youtu Lab Tencent China Software School of Tsinghua University China
In this paper, we are committed to establishing a unified and end-to-end multi-modal network via exploring language-guided visual recognition. To approach this target, we first propose a novel multimodal convolution m... 详细信息
来源: 评论
Lottery Jackpots Exist in Pre-trained Models
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Yuxin Lin, Mingbao Zhong, Yunshan Chao, Fei Ji, Rongrong The Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Xiamen361005 China School of Informatics Xiamen University Xiamen361005 China Youtu Laboratory Tencent Shanghai200233 China Institute of Artificial Intelligence Xiamen University Xiamen361005 China
Network pruning is an effective approach to reduce network complexity with acceptable performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight training or complex sear... 详细信息
来源: 评论
Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Tianshuo Li, Lijiang Mi, Peng Zheng, Xiawu Chao, Fei Ji, Rongrong Tian, Yonghong Shen, Qiang Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China School of Informatics Xiamen University 361005 China Peng Cheng Laboratory Shenzhen518066 China Department of Computer Science Institute of Mathematics Physics and Computer Science Aberystwyth University SY23 3DB United Kingdom Institute of Artificial Intelligence Xiamen University Xiamen361005 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China
PSNR-oriented models are a critical class of super-resolution models with applications across various fields. However, these models tend to generate over-smoothed images, a problem that has been analyzed previously fr... 详细信息
来源: 评论
Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
arXiv
收藏 引用
arXiv 2021年
作者: Zheng, Chuanpan Fan, Xiaoliang Pan, Shirui Jin, Haibing Peng, Zhaopeng Wu, Zonghan Wang, Cheng Yu, Philip S. Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Informatics Computer Science and Technology Department Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Xiamen361005 China School of Information and Communication Technology Griffith University Australia Centre for Artificial Intelligence FEIT University of Technology Sydney Australia Department of Computer Science University of Illinois at Chicago ChicagoIL60607 United States
Recent studies have shifted their focus towards formulating traffic forecasting as a spatio-temporal graph modeling problem. Typically, they constructed a static spatial graph at each time step and then connected each... 详细信息
来源: 评论
Discover and align taxonomic context priors for open-world semi-supervised learning  23
Discover and align taxonomic context priors for open-world s...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Yu Wang Zhun Zhong Pengchong Qiao Xuxin Cheng Xiawu Zheng Chang Liu Nicu Sebe Rongrong Ji Jie Chen School of Electronic and Computer Engineering Peking University Shenzhen China and AI for Science (AI4S)-Preferred Program Peking University Shenzhen Graduate School China School of Computer Sceince University of Nottingham United Kingdom School of Electronic and Computer Engineering Peking University Shenzhen China and Department of Information Engineering and Computer Science University of Trento Italy School of Electronic and Computer Engineering Peking University Shenzhen China Peng Cheng Laboratory Shenzhen China and Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Department of Automation Tsinghua University Beijing China Department of Information Engineering and Computer Science University of Trento Italy School of Electronic and Computer Engineering Peking University Shenzhen China and Peng Cheng Laboratory Shenzhen China and AI for Science (AI4S)-Preferred Program Peking University Shenzhen Graduate School China
Open-world Semi-Supervised Learning (OSSL) is a realistic and challenging task, aiming to classify unlabeled samples from both seen and novel classes using partially labeled samples from the seen classes. Previous wor...
来源: 评论
Deep Code Search with Naming-Agnostic Contrastive Multi-view Learning
收藏 引用
ACM Transactions on Knowledge Discovery from Data 1000年
作者: Jiadong Feng Wei Li Suhuang Wu Zhao Wei Yong Xu Juhong Wang Hui Li Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China School of Electronic and Computer Engineering Peking University China Tencent China
Software development is a repetitive task, as developers usually reuse or get inspiration from existing implementations. Code search, which refers to the retrieval of relevant code snippets from a codebase according t... 详细信息
来源: 评论
MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples
收藏 引用
ACM Transactions on multimedia computing, Communications, and Applications 1000年
作者: Tao Chen Enwei Zhang Yuting Gao Ke Li Xing Sun Yan Zhang Hui Li Rongrong Ji Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Tencent Youtu Lab China
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context ... 详细信息
来源: 评论