In this paper, we are committed to establishing a unified and end-to-end multi-modal network via exploring language-guided visual recognition. To approach this target, we first propose a novel multimodal convolution m...
详细信息
Network pruning is an effective approach to reduce network complexity with acceptable performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight training or complex sear...
详细信息
Network pruning is an effective approach to reduce network complexity with acceptable performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight training or complex searching on networks with expanded width, which greatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight training, termed "lottery jackpots", exist in pre-trained models with unexpanded width. Our presented lottery jackpots are traceable through empirical and theoretical outcomes. For example, we obtain a lottery jackpot that has only 10% parameters and still reaches the performance of the original dense VGGNet-19 without any modifications on the pre-trained weights on CIFAR-10. Furthermore, we improve the efficiency for searching lottery jackpots from two perspectives. Firstly, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. In compliance with this insight, we initialize our sparse mask using the magnitude-based pruning, resulting in at least 3× cost reduction on the lottery jackpot searching while achieving comparable or even better performance. Secondly, we conduct an in-depth analysis of the searching process for lottery jackpots. Our theoretical result suggests that the decrease in training loss during weight searching can be disturbed by the dependency between weights in modern networks. To mitigate this, we propose a novel short restriction method to restrict change of masks that may have potential negative impacts on the training loss, which leads to a faster convergence and reduced oscillation for searching lottery jackpots. Consequently, our searched lottery jackpot removes 90% weights in ResNet-50, while it easily obtains more than 70% top-1 accuracy using only 5 searching
PSNR-oriented models are a critical class of super-resolution models with applications across various fields. However, these models tend to generate over-smoothed images, a problem that has been analyzed previously fr...
详细信息
Recent studies have shifted their focus towards formulating traffic forecasting as a spatio-temporal graph modeling problem. Typically, they constructed a static spatial graph at each time step and then connected each...
详细信息
Open-world Semi-Supervised Learning (OSSL) is a realistic and challenging task, aiming to classify unlabeled samples from both seen and novel classes using partially labeled samples from the seen classes. Previous wor...
Open-world Semi-Supervised Learning (OSSL) is a realistic and challenging task, aiming to classify unlabeled samples from both seen and novel classes using partially labeled samples from the seen classes. Previous works typically explore the relationship of samples as priors on the pre-defined single-granularity labels to help novel class recognition. In fact, classes follow a taxonomy and samples can be classified at multiple levels of granularity, which contains more underlying relationships for supervision. We thus argue that learning with single-granularity labels results in sub-optimal representation learning and inaccurate pseudo labels, especially with unknown classes. In this paper, we take the initiative to explore and propose a uniformed framework, called Taxonomic context prIors Discovering and Aligning (TIDA), which exploits the relationship of samples under various granularity. It allows us to discover multi-granularity semantic concepts as taxonomic context priors (i.e., sub-class, target-class, and super-class), and then collaboratively leverage them to enhance representation learning and improve the quality of pseudo labels. Specifically, TIDA comprises two components: i) A taxonomic context discovery module that constructs a set of hierarchical prototypes in the latent space to discover the underlying taxonomic context priors; ii) A taxonomic context-based prediction alignment module that enforces consistency across hierarchical predictions to build the reliable relationship between classes among various granularity and provide additions supervision. We demonstrate that these two components are mutually beneficial for an effective OSSL framework, which is theoretically explained from the perspective of the EM algorithm. Extensive experiments on seven commonly used datasets show that TIDA can significantly improve the performance and achieve a new state of the art. The source codes are publicly available at https://***/rain305f/TIDA.
Software development is a repetitive task, as developers usually reuse or get inspiration from existing implementations. Code search, which refers to the retrieval of relevant code snippets from a codebase according t...
详细信息
Software development is a repetitive task, as developers usually reuse or get inspiration from existing implementations. Code search, which refers to the retrieval of relevant code snippets from a codebase according to the developer’s intent that has been expressed as a query, has become increasingly important in the software development process. Due to the success of deep learning in various applications, a great number of deep learning based code search approaches have sprung up and achieved promising results. However, developers may not follow the same naming conventions and the same variable may have different variable names in different implementations, bringing a challenge to deep learning based code search methods that rely on explicit variable correspondences to understand source code. To overcome this challenge, we propose a naming-agnostic code search method (NACS) based on contrastive multi-view code representation learning. NACS strips information bound to variable names from Abstract Syntax Tree (AST), the representation of the abstract syntactic structure of source code, and focuses on capturing intrinsic properties solely from AST structures. We use semantic-level and syntax-level augmentation techniques to prepare realistically rational data and adopt contrastive learning to design a graph-view modeling component in NACS to enhance the understanding of code snippets. We further model ASTs in a path view to strengthen the graph-view modeling component through multi-view learning. Extensive experiments show that NACS provides superior code search performance compared to baselines and NACS can be adapted to help existing code search methods overcome the impact of different naming conventions. Our implementation is available at https://***/KDEGroup/NACS.
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context ...
详细信息
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm that boosts multi-modal fine-tuning by fully leveraging the promising ICL capability of multi-modal LLMs (MM-LLMs). We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives. Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features. Moreover, leveraging the flexibility of M-Hub, we design a variety of in-context demonstrations. Extensive experiments on a diverse range of downstream multi-modal tasks demonstrate that MMICT significantly outperforms traditional fine-tuning strategy and the vanilla ICT method that directly takes the concatenation of all information from different modalities as input. Our implementation is available at: https://***/KDEGroup/MMICT.
暂无评论