咨询与建议

限定检索结果

文献类型

  • 204 篇 期刊文献
  • 170 篇 会议

馆藏范围

  • 374 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 235 篇 工学
    • 192 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 49 篇 信息与通信工程
    • 29 篇 控制科学与工程
    • 22 篇 光学工程
    • 18 篇 机械工程
    • 16 篇 建筑学
    • 16 篇 土木工程
    • 15 篇 网络空间安全
    • 13 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 测绘科学与技术
    • 11 篇 生物工程
    • 10 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 动力工程及工程热...
  • 76 篇 管理学
    • 43 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 67 篇 理学
    • 35 篇 数学
    • 17 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 12 篇 生物学
    • 10 篇 化学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
    • 3 篇 法学
  • 2 篇 农学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 15 篇 semantics
  • 12 篇 image segmentati...
  • 10 篇 training
  • 9 篇 reinforcement le...
  • 9 篇 contrastive lear...
  • 8 篇 visual languages
  • 7 篇 speech processin...
  • 7 篇 convolution
  • 7 篇 computer vision
  • 7 篇 image reconstruc...
  • 6 篇 semantic segment...
  • 6 篇 distillation
  • 6 篇 visualization
  • 6 篇 pipelines
  • 5 篇 costs
  • 5 篇 benchmarking
  • 5 篇 codes
  • 4 篇 object detection
  • 4 篇 signal processin...
  • 4 篇 redundancy

机构

  • 214 篇 key laboratory o...
  • 62 篇 institute of art...
  • 40 篇 key laboratory o...
  • 36 篇 tencent youtu la...
  • 33 篇 peng cheng labor...
  • 32 篇 school of inform...
  • 25 篇 key laboratory o...
  • 22 篇 fujian key labor...
  • 20 篇 fujian key labor...
  • 18 篇 youtu lab tencen...
  • 17 篇 key laboratory o...
  • 10 篇 school of inform...
  • 10 篇 national univers...
  • 8 篇 tencent
  • 8 篇 skywork ai
  • 8 篇 school of comput...
  • 8 篇 the key laborato...
  • 8 篇 department of ar...
  • 7 篇 key laboratory o...
  • 6 篇 department of co...

作者

  • 152 篇 ji rongrong
  • 67 篇 sun xiaoshuai
  • 49 篇 rongrong ji
  • 40 篇 cao liujuan
  • 37 篇 ji jiayi
  • 30 篇 zhou yiyi
  • 30 篇 zhang shengchuan
  • 28 篇 wang cheng
  • 25 篇 ma yiwei
  • 24 篇 zhang yuxin
  • 24 篇 zheng xiawu
  • 22 篇 chao fei
  • 19 篇 luo gen
  • 18 篇 lin mingbao
  • 18 篇 zhang yan
  • 17 篇 xiaoshuai sun
  • 16 篇 wang haowei
  • 15 篇 shen yunhang
  • 15 篇 jiang guannan
  • 15 篇 li hui

语言

  • 318 篇 英文
  • 56 篇 其他
检索条件"机构=Key Laboratory of Multimedia Trusted Perception and Efficient Computing"
374 条 记 录,以下是371-380 订阅
排序:
Discover and align taxonomic context priors for open-world semi-supervised learning  23
Discover and align taxonomic context priors for open-world s...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Yu Wang Zhun Zhong Pengchong Qiao Xuxin Cheng Xiawu Zheng Chang Liu Nicu Sebe Rongrong Ji Jie Chen School of Electronic and Computer Engineering Peking University Shenzhen China and AI for Science (AI4S)-Preferred Program Peking University Shenzhen Graduate School China School of Computer Sceince University of Nottingham United Kingdom School of Electronic and Computer Engineering Peking University Shenzhen China and Department of Information Engineering and Computer Science University of Trento Italy School of Electronic and Computer Engineering Peking University Shenzhen China Peng Cheng Laboratory Shenzhen China and Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Department of Automation Tsinghua University Beijing China Department of Information Engineering and Computer Science University of Trento Italy School of Electronic and Computer Engineering Peking University Shenzhen China and Peng Cheng Laboratory Shenzhen China and AI for Science (AI4S)-Preferred Program Peking University Shenzhen Graduate School China
Open-world Semi-Supervised Learning (OSSL) is a realistic and challenging task, aiming to classify unlabeled samples from both seen and novel classes using partially labeled samples from the seen classes. Previous wor...
来源: 评论
Multiview Subgraph Neural Networks: Self-Supervised Learning With Scarce Labeled Data
收藏 引用
IEEE Transactions on Neural Networks and Learning Systems 2024年 第6期PP卷 11548-11561页
作者: Wang, Zhenzhong Zeng, Qingyuan Lin, Wanyu Jiang, Min Tan, Kay Chen Department of Computing The Hong Kong Polytechnic University Hong Kong SAR China Department of Artificial Intelligence Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan Ministry of Culture and Tourism School of Informatics Xiamen University Xiamen Fujian China Department of Computing Department of Data Science and Artificial Intelligence The Hong Kong Polytechnic University Hong Kong SAR China Department of Data Science and Artificial Intelligence The Hong Kong Polytechnic University Hong Kong SAR China
While graph neural networks (GNNs) have become the de facto standard for graph-based node classification, they impose a strong assumption on the availability of sufficient labeled samples. This assumption restricts th... 详细信息
来源: 评论
Deep Code Search with Naming-Agnostic Contrastive Multi-view Learning
收藏 引用
ACM Transactions on Knowledge Discovery from Data 1000年
作者: Jiadong Feng Wei Li Suhuang Wu Zhao Wei Yong Xu Juhong Wang Hui Li Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China School of Electronic and Computer Engineering Peking University China Tencent China
Software development is a repetitive task, as developers usually reuse or get inspiration from existing implementations. Code search, which refers to the retrieval of relevant code snippets from a codebase according t... 详细信息
来源: 评论
MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples
收藏 引用
ACM Transactions on multimedia computing, Communications, and Applications 1000年
作者: Tao Chen Enwei Zhang Yuting Gao Ke Li Xing Sun Yan Zhang Hui Li Rongrong Ji Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Tencent Youtu Lab China
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context ... 详细信息
来源: 评论