版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
Traffic flow prediction is beneficial to future intelligent traffic management and urban planning. However, existing studies have limitations in dealing with spatio-temporal dependencies and multimodal data fusion. It is difficult to comprehensively capture long-term dependencies and short-term spatial relationships, which limit prediction accuracy. In this paper, a multimodal traffic flow prediction model based on the Spatio-Temporal Mixed Attention network (ST-MANet) is proposed to address these issues in urban traffic flow prediction. The model's global attention is used to capture long-term trends and periodic patterns in historical data, while local attention is employed to capture short-term spatial relationships among adjacent regions or nodes. Moreover, the model fuses multimodal data, such as weather and holiday information, and introduces an adaptive attention scaling module to dynamically adjust the weights of global and local information, thereby enhancing the model's robustness and adaptability. Experimental results on the real traffic datasets PeMS04 and PeMS08 show that ST-MANet outperforms traditional methods and other mainstream models in terms of prediction precision and robustness.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论