咨询与建议

限定检索结果

文献类型

  • 946 篇 会议
  • 421 篇 期刊文献

馆藏范围

  • 1,367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 894 篇 工学
    • 379 篇 控制科学与工程
    • 343 篇 计算机科学与技术...
    • 316 篇 软件工程
    • 279 篇 机械工程
    • 168 篇 仪器科学与技术
    • 129 篇 电气工程
    • 93 篇 信息与通信工程
    • 70 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 56 篇 光学工程
    • 52 篇 生物医学工程(可授...
    • 51 篇 力学(可授工学、理...
    • 51 篇 化学工程与技术
    • 50 篇 材料科学与工程(可...
    • 48 篇 动力工程及工程热...
    • 46 篇 交通运输工程
    • 36 篇 建筑学
    • 31 篇 土木工程
    • 31 篇 航空宇航科学与技...
    • 30 篇 安全科学与工程
  • 423 篇 理学
    • 204 篇 数学
    • 130 篇 物理学
    • 82 篇 系统科学
    • 70 篇 生物学
    • 69 篇 统计学(可授理学、...
    • 46 篇 化学
  • 144 篇 管理学
    • 129 篇 管理科学与工程(可...
    • 34 篇 工商管理
    • 24 篇 图书情报与档案管...
  • 38 篇 医学
    • 32 篇 临床医学
  • 19 篇 法学
  • 15 篇 经济学
  • 8 篇 农学
  • 3 篇 教育学
  • 3 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 43 篇 training
  • 40 篇 robots
  • 33 篇 robot sensing sy...
  • 33 篇 feature extracti...
  • 31 篇 force
  • 31 篇 mathematical mod...
  • 29 篇 accuracy
  • 28 篇 manipulators
  • 28 篇 mobile robots
  • 28 篇 real-time system...
  • 27 篇 trajectory
  • 27 篇 robustness
  • 25 篇 visualization
  • 24 篇 simulation
  • 24 篇 neural networks
  • 24 篇 control systems
  • 23 篇 kinematics
  • 22 篇 three-dimensiona...
  • 22 篇 computational mo...
  • 22 篇 predictive model...

机构

  • 215 篇 institutes for r...
  • 196 篇 key laboratory o...
  • 155 篇 university of ch...
  • 152 篇 state key labora...
  • 137 篇 shenyang institu...
  • 78 篇 state key labora...
  • 69 篇 state key labora...
  • 43 篇 state key labora...
  • 40 篇 school of artifi...
  • 34 篇 state key labora...
  • 34 篇 state key labora...
  • 25 篇 key laboratory o...
  • 24 篇 chinese academy ...
  • 24 篇 chinese academy ...
  • 20 篇 state key labora...
  • 19 篇 school of electr...
  • 18 篇 the state key la...
  • 18 篇 college of elect...
  • 17 篇 school of inform...
  • 17 篇 college of infor...

作者

  • 28 篇 yang kailun
  • 28 篇 peng zeng
  • 26 篇 zeng peng
  • 24 篇 shi hao
  • 22 篇 tao zhang
  • 22 篇 song chunhe
  • 22 篇 chenguang yang
  • 21 篇 wang kaiwei
  • 21 篇 zeng-guang hou
  • 20 篇 junzhi yu
  • 17 篇 liang wei
  • 16 篇 yang zhijia
  • 16 篇 yu junzhi
  • 15 篇 zhang tao
  • 15 篇 zhang yinlong
  • 15 篇 gao fei
  • 15 篇 xiong rong
  • 15 篇 wei liang
  • 14 篇 jie zhao
  • 14 篇 wang yue

语言

  • 1,286 篇 英文
  • 49 篇 其他
  • 32 篇 中文
  • 1 篇 日文
检索条件"机构=Key Laboratory of Networked Control Systems State Key Laboratory of Robotics"
1367 条 记 录,以下是381-390 订阅
排序:
T3: Multi-modal Tailless Triple-Flapping-Wing Robot for Efficient Aerial and Terrestrial Locomotion
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Xiangyu Zheng, Zhi Wang, Jin Chen, Yikai Huang, Jingyang Wu, Ruixin Yu, Huan Lu, Guodong The State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310058 China Zhejiang Key Laboratory of Industrial Big Data and Robot Intelligent Systems Zhejiang University Hangzhou310058 China Robotics Research Center of Yuyao City Ningbo315400 China College of Control Science and Engineering Zhejiang University Hangzhou310027 China
Flapping-wing robots offer great versatility;however, achieving efficient multi-modal locomotion remains challenging. This paper presents the design, modeling, and experimentation of T3, a novel tailless flapping-wing... 详细信息
来源: 评论
SIM: A Scenario IMagination Based Deep Reinforcement Learning Method for Outdoor Transportation Environment Exploration  11
SIM: A Scenario IMagination Based Deep Reinforcement Learnin...
收藏 引用
11th IEEE Data Driven control and Learning systems Conference, DDCLS 2022
作者: Li, Haoran Zhang, Qichao Chen, Yaran Zhao, Dongbin State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518000 China
Autonomous exploration is very important for robotics, especially for mapping, navigation, and planning in an unknown environment. In recent years, automatic exploration methods in the indoor environment have been ext... 详细信息
来源: 评论
Research on master-slave teleoperation control algorithm based on exoskeleton master hand
Research on master-slave teleoperation control algorithm bas...
收藏 引用
第35届中国控制与决策会议
作者: Jing Hou Yong Jiang Liang Zhao Peng Yu Jinxiang Pian School of Electrical and control Engineering Shenyang Jianzhu University State Key Laboratory of Robotics Shenyang Institute of AutomationChinese Academy of Sciences
In order to obtain a more anthropomorphic experience in remote control,we use a wearable exoskeleton type master hand,which can obtain real-time human upper limb motion *** through the master-slave constraint algorith... 详细信息
来源: 评论
Application of Deep Learning Method to Estimate Bottomhole Pressure Dynamics of Oil Wells
Application of Deep Learning Method to Estimate Bottomhole P...
收藏 引用
IEEE International Symposium on Industrial Electronics (ISIE)
作者: Haibo Cheng Shichao Li Peng Zeng Valeriy Vyatkin State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China Department of Computer Science Electrical and Space Engineering Luleå University of Technology Luleå Sweden Department of Electrical Engineering and Automation Aalto University Helsinki Finland
Surrogate models, which have become an effective and popular method to close loop reservoir management problems, use a data-driven approach to predict dynamic injection and production wells parameters and optimize wat...
来源: 评论
Fault Diagnostic Opportunities for Robot Servo Motors Using the Physics of Failure Analysis
Fault Diagnostic Opportunities for Robot Servo Motors Using ...
收藏 引用
International Conference on Reliability, Maintainability and Safety,ICRMS
作者: Bo Zhang Shan Liang Kai Wang Key Laboratory of Networked Control Systems Shenyang Institute of Automation Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China College of Computer Science and Technology University of Chemical Technology Chinese Academy of Sciences Shenyang China
Joint robots are widely used in various industries, such as aviation, aerospace, and automotive manufacturing. The performance degradation of servo motors can significantly affect the overall performance of the robots... 详细信息
来源: 评论
An optimization Strategy for Deep Neural Networks Training
An optimization Strategy for Deep Neural Networks Training
收藏 引用
Image Processing, Computer Vision and Machine Learning (ICICML), International Conference on
作者: Tingting Wu Peng Zeng Chunhe Song State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China University of Chinese Academy of Sciences Beijing China
Learning rate is one of the essential hyperparameters influencing the training process and the accuracy of deep neural networks. However, until now, it is challenging to determine an optimal learning rate. A large lea... 详细信息
来源: 评论
Based on an improved Zero-DCE++ low-light enhanced object detection algorithm
Based on an improved Zero-DCE++ low-light enhanced object de...
收藏 引用
2024 International Conference on Mechatronic Engineering and Artificial Intelligence, MEAI 2024
作者: Bai, Xuecheng Gao, Hongwei Zhao, Zhanpeng Yan, Zhiwen School of Automation and Electrical Engineering Shenyang Ligong University Liaoning Shenyang110159 China Institute of International Engineering Shenyang Ligong University Liaoning Shenyang110159 China China State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Liaoning Shenyang110159 China Xi'an Modern Control Technology Research Institute Xi'an710100 China
Low-light image quality often suffers from noise, color distortion, and reduced contrast, challenging accurate object detection. Traditional enhancement methods can lead to over-processing and semantic information los... 详细信息
来源: 评论
An Optimal control Formulation of Tool Affordance Applied to Impact Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Ti, Boyang Gao, Yongsheng Zhao, Jie Calinon, Sylvain The State Key Laboratory of Robotics and Systems Harbin Institute of Technology Harbin150001 China Idiap Research Institute MartignyCH-1920 Switzerland Lausanne1015 Switzerland
Humans use tools to complete impact-aware tasks such as hammering a nail or playing tennis. The postures adopted to use these tools can significantly influence the performance of these tasks, where the force or veloci... 详细信息
来源: 评论
Dynamic Collision Avoidance Using Velocity Obstacle-Based control Barrier Functions
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Jihao Zeng, Jun Chi, Xuemin Sreenath, Koushil Liu, Zhitao Su, Hongye State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and Control Zhejiang University Hangzhou China Institute of Intelligence Science and Engineering Shenzhen Polytechnic University Shenzhen China Hybrid Robotics Group The Department of Mechanical Engineering UC Berkeley United States
Designing safety-critical controllers for acceleration-controlled unicycle robots is challenging, as control inputs may not appear in the constraints of control Lyapunov functions (CLFs) and control barrier functions ... 详细信息
来源: 评论
An Improved Dual Neural Network Method Based on Levy Flight for Multi-Robot Cooperative Area Coverage Search in 3D Unknown Environments
收藏 引用
IEEE Transactions on Cognitive and Developmental systems 2025年
作者: Zhang, Fangfang Wang, Yongqi Wang, Wenhao Xin, Jianbin Peng, Jinzhu Wang, Yaonan Zhengzhou University School of Electrical and Information Engineering Zhengzhou450001 China State Key Laboratory of Intelligent Agricultural Power Equipment Luoyang471039 China National Engineering Laboratory of Robot Visual Perception and Control Technology School of Robotics Hunan University Changsha410082 China
The research on multi-robot collaborative search in unknown 3D environments, based on bio-inspired neural networks, holds significant value and ***, challenges arise in 3D environments, including excessive turning and... 详细信息
来源: 评论