咨询与建议

限定检索结果

文献类型

  • 225 篇 期刊文献
  • 174 篇 会议

馆藏范围

  • 399 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 200 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 41 篇 信息与通信工程
    • 38 篇 控制科学与工程
    • 32 篇 生物工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 16 篇 电气工程
    • 13 篇 化学工程与技术
    • 11 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
  • 137 篇 理学
    • 91 篇 数学
    • 37 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 24 篇 系统科学
    • 23 篇 物理学
    • 13 篇 化学
  • 46 篇 管理学
    • 30 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 18 篇 laboratories
  • 18 篇 machine learning
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 13 篇 semantics
  • 12 篇 pattern recognit...
  • 11 篇 training
  • 10 篇 contrastive lear...
  • 10 篇 computational li...
  • 9 篇 image segmentati...
  • 9 篇 feature extracti...
  • 8 篇 learning
  • 8 篇 humans
  • 7 篇 object detection
  • 7 篇 reinforcement le...
  • 7 篇 convergence
  • 6 篇 neurons

机构

  • 81 篇 miit key laborat...
  • 66 篇 college of compu...
  • 28 篇 college of compu...
  • 19 篇 guangdong key la...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 17 篇 miit key laborat...
  • 17 篇 key laboratory o...
  • 14 篇 gaoling school o...
  • 14 篇 beijing key labo...
  • 13 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 11 篇 school of comput...
  • 10 篇 department of st...
  • 9 篇 tsinghua univers...
  • 9 篇 school of data a...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 8 篇 college of compu...
  • 7 篇 pattern recognit...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 16 篇 songcan chen
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 zhou jie
  • 13 篇 lin yankai
  • 12 篇 tan xiaoyang
  • 10 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li peng

语言

  • 382 篇 英文
  • 15 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Pattern Analysis and Machine Intelligence"
399 条 记 录,以下是1-10 订阅
KD-Crowd:a knowledge distillation framework for learning from crowds
收藏 引用
Frontiers of Computer Science 2025年 第1期19卷 119-130页
作者: Shaoyuan LI Yuxiang ZHENG Ye SHI Shengjun HUANG Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing 211106China
Recently, crowdsourcing has established itself as an efficient labeling solution by distributing tasks to crowd workers. As the workers can make mistakes with diverse expertise, one core learning task is to estimate e... 详细信息
来源: 评论
A Deep Model for Partial Multi-label Image Classification with Curriculum-based Disambiguation
收藏 引用
machine intelligence Research 2024年 第4期21卷 801-814页
作者: Feng Sun Ming-Kun Xie Sheng-Jun Huang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and TechnologyNanjing University of AeronauticsandAstronauticsNanjing211106China
In this paper,we study the partial multi-label(PML)image classification problem,where each image is annotated with a candidate label set consisting of multiple relevant labels and other noisy *** PML methods typically... 详细信息
来源: 评论
Relative difficulty distillation for semantic segmentation
收藏 引用
Science China(Information Sciences) 2024年 第9期67卷 126-145页
作者: Dong LIANG Yue SUN Yun DU Songcan CHEN Sheng-Jun HUANG MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Shenzhen Research Institute Nanjing University of Aeronautics and Astronautics
Current knowledge distillation(KD) methods primarily focus on transferring various structured knowledge and designing corresponding optimization goals to encourage the student network to imitate the output of the teac... 详细信息
来源: 评论
Sequential Cooperative Distillation for Imbalanced Multi-Task Learning
收藏 引用
Journal of Computer Science & Technology 2024年 第5期39卷 1094-1106页
作者: Quan Feng Jia-Yu Yao Ming-Kun Xie Sheng-Jun Huang Song-Can Chen College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing 211106China
Multi-task learning(MTL)can boost the performance of individual tasks by mutual learning among multiple related ***,when these tasks assume diverse complexities,their corresponding losses involved in the MTL objective... 详细信息
来源: 评论
Pushing one pair of labels apart each time in multi-label learning: from single positive to full labels
收藏 引用
Science China(Information Sciences) 2025年 第6期 268-285页
作者: Xiang LI Xinrui WANG Songcan CHEN MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology/College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics
In multi-label learning(MLL), it is extremely challenging to accurately annotate every appearing object due to expensive costs and limited knowledge. When facing such a challenge, a more practical and cheaper alternat...
来源: 评论
Learning multi-tasks with inconsistent labels by using auxiliary big task
收藏 引用
Frontiers of Computer Science 2023年 第5期17卷 119-132页
作者: Quan FENG Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and AstronauticsNanjing 211106China
Multi-task learning is to improve the performance of the model by transferring and exploiting common knowledge among *** MTL works mainly focus on the scenario where label sets among multiple tasks(MTs)are usually the... 详细信息
来源: 评论
Multiband decomposition and spectral discriminative analysis for motor imagery BCI via deep neural network
收藏 引用
Frontiers of Computer Science 2022年 第5期16卷 71-83页
作者: Pengpai WANG Mingliang WANG Yueying ZHOU Ziming XU Daoqiang ZHANG College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing 211106China
Human limb movement imagery,which can be used in limb neural disorders rehabilitation and brain-controlled external devices,has become a significant control paradigm in the domain of brain-computer interface(BCI).Alth... 详细信息
来源: 评论
An Improved Algorithm for Spiking Neural Networks with Multi-Scale Attention Coding
An Improved Algorithm for Spiking Neural Networks with Multi...
收藏 引用
2024 International Conference on Cyber-Physical Social intelligence, ICCSI 2024
作者: Chen, Sisi Chen, Xiaofeng Li, Weikai Chongqing Jiaotong University Department of Mathematics Chongqing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Spiking Neural Networks (SNNs), driven by spike-based mechanisms, are known for their high efficiency and low energy consumption, which makes them ideal for applications like image classification, object detection, an... 详细信息
来源: 评论
Robust AUC maximization for classification with pairwise confidence comparisons
收藏 引用
Frontiers of Computer Science 2024年 第4期18卷 73-83页
作者: Haochen SHI Mingkun XIE Shengjun HUANG College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China College of Electronic and Information Engineering Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106China
Supervised learning often requires a large number of labeled examples,which has become a critical bottleneck in the case that manual annotating the class labels is *** mitigate this issue,a new framework called pairwi... 详细信息
来源: 评论
Class-aware Learning for Imbalanced Multi-Label Classification  5
Class-aware Learning for Imbalanced Multi-Label Classificati...
收藏 引用
5th IEEE International Conference on Civil Aviation Safety and Information Technology, ICCASIT 2023
作者: Chen, Jiayao Li, Shaoyuan Nanjing University of Aeronautics and Astronautics Miit Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Imbalanced multi-label image classification has gained increasing attention recently, in which each sample has multiple class labels, but the number of each category is unevenly distributed. It's common in practic... 详细信息
来源: 评论