咨询与建议

限定检索结果

文献类型

  • 225 篇 期刊文献
  • 174 篇 会议

馆藏范围

  • 399 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 250 篇 工学
    • 200 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 41 篇 信息与通信工程
    • 38 篇 控制科学与工程
    • 32 篇 生物工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 16 篇 电气工程
    • 13 篇 化学工程与技术
    • 11 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
  • 137 篇 理学
    • 91 篇 数学
    • 37 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 24 篇 系统科学
    • 23 篇 物理学
    • 13 篇 化学
  • 46 篇 管理学
    • 30 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 18 篇 laboratories
  • 18 篇 machine learning
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 13 篇 semantics
  • 12 篇 pattern recognit...
  • 11 篇 training
  • 10 篇 contrastive lear...
  • 10 篇 computational li...
  • 9 篇 image segmentati...
  • 9 篇 feature extracti...
  • 8 篇 learning
  • 8 篇 humans
  • 7 篇 object detection
  • 7 篇 reinforcement le...
  • 7 篇 convergence
  • 6 篇 neurons

机构

  • 81 篇 miit key laborat...
  • 66 篇 college of compu...
  • 28 篇 college of compu...
  • 19 篇 guangdong key la...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 17 篇 miit key laborat...
  • 17 篇 key laboratory o...
  • 14 篇 gaoling school o...
  • 14 篇 beijing key labo...
  • 13 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 11 篇 school of comput...
  • 10 篇 department of st...
  • 9 篇 tsinghua univers...
  • 9 篇 school of data a...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 8 篇 college of compu...
  • 7 篇 pattern recognit...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 16 篇 songcan chen
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 13 篇 zhou jie
  • 13 篇 lin yankai
  • 12 篇 tan xiaoyang
  • 10 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li peng

语言

  • 382 篇 英文
  • 15 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Pattern Analysis and Machine Intelligence"
399 条 记 录,以下是21-30 订阅
Robust domain adaptation with noisy and shifted label distribution
收藏 引用
Frontiers of Computer Science 2025年 第3期19卷 25-36页
作者: Shao-Yuan LI Shi-Ji ZHAO Zheng-Tao CAO Sheng-Jun HUANG Songcan CHEN MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 211106China
Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution *** UDA methods have ac... 详细信息
来源: 评论
Boundary Data Augmentation for Offline Reinforcement Learning
收藏 引用
ZTE Communications 2023年 第3期21卷 29-36页
作者: SHEN Jiahao JIANG Ke TAN Xiaoyang College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing 211106China
Offline reinforcement learning(ORL)aims to learn a rational agent purely from behavior data without any online *** of the major challenges encountered in ORL is the problem of distribution shift,i.e.,the mismatch betw... 详细信息
来源: 评论
DouGNN: An End-to-End Deep Learning Framework for Predicting Individual Behaviors from fMRI Data  2
DouGNN: An End-to-End Deep Learning Framework for Predicting...
收藏 引用
2nd International Conference on Image Processing, Computer Vision and machine Learning, ICICML 2023
作者: Cao, Qumei Wen, Xuyun MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics College of Computer Science and Technology Jiangsu Nanjing China
Predicting individual behavior from functional connectivity (FC) using machine learning is a critical research topic in neuroscience. While various models have been proposed, they mainly focus on designing behavior pr... 详细信息
来源: 评论
A Systematic Evaluation of Large Language Models for Natural Language Generation Tasks  22
A Systematic Evaluation of Large Language Models for Natural...
收藏 引用
22nd Chinese National Conference on Computational Linguistics, CCL 2023
作者: Ni, Xuanfan Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210016 China
Recent efforts have evaluated large language models (LLMs) in areas such as commonsense reasoning, mathematical reasoning, and code generation. However, to the best of our knowledge, no work has specifically investiga... 详细信息
来源: 评论
AE-TPGG:a novel autoencoder-based approach for single-cell RNA-seq data imputation and dimensionality reduction
收藏 引用
Frontiers of Computer Science 2023年 第3期17卷 217-234页
作者: Shuchang ZHAO Li ZHANG Xuejun LIU MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 211106China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing 210023China College of Computer Science and Technology Nanjing Forestry UniversityNanjing 210037China
Single-cell RNA sequencing(scRNA-seq)technology has become an effective tool for high-throughout transcriptomic study,which circumvents the averaging artifacts corresponding to bulk RNA-seq technology,yielding new per... 详细信息
来源: 评论
Characteristic AI Agents via Large Language Models  30
Characteristic AI Agents via Large Language Models
收藏 引用
Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
作者: Wang, Xi Dai, Hongliang Gao, Shen Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Technology Shandong University China
The advancement of Large Language Models (LLMs) has led to significant enhancements in the performance of chatbot systems. Many researchers have dedicated their efforts to the development of bringing characteristics t... 详细信息
来源: 评论
On the learning dynamics of two-layer quadratic neural networks for understanding deep learning
收藏 引用
Frontiers of Computer Science 2022年 第3期16卷 77-82页
作者: Zhenghao TAN Songcan CHEN College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing 211106China
Deep learning performs as a powerful paradigm in many real-world applications;however,its mechanism remains much of a *** gain insights about nonlinear hierarchical deep networks,we theoretically describe the coupled ... 详细信息
来源: 评论
Forgetting, Ignorance or Myopia: Revisiting key Challenges in Online Continual Learning  38
Forgetting, Ignorance or Myopia: Revisiting Key Challenges i...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wang, Xinrui Geng, Chuanxing Wan, Wenhai Li, Shao-Yuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China School of Computer Science and Technology Huazhong University of Science and Technology China
Online continual learning (OCL) requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting ...
来源: 评论
All-around Neural Collapse for Imbalanced Classification
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Enhao Li, Chaohua Geng, Chuanxing Chen, Songcan MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Nanjing211106 China
Neural Collapse (NC) presents an elegant geometric structure that enables individual activations (features), class means and classifier (weights) vectors to reach optimal interclass separability during the terminal ph... 详细信息
来源: 评论
Causality-enhanced Discreted Physics-informed Neural Networks for Predicting Evolutionary Equations  33
Causality-enhanced Discreted Physics-informed Neural Network...
收藏 引用
33rd International Joint Conference on Artificial intelligence, IJCAI 2024
作者: Li, Ye Chen, Siqi Shan, Bin Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Physics-informed neural networks (PINNs) have shown promising potential for solving partial differential equations (PDEs) using deep learning. However, PINNs face training difficulties for evolutionary PDEs, particula...
来源: 评论