咨询与建议

限定检索结果

文献类型

  • 221 篇 期刊文献
  • 172 篇 会议

馆藏范围

  • 393 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 246 篇 工学
    • 196 篇 计算机科学与技术...
    • 168 篇 软件工程
    • 39 篇 信息与通信工程
    • 37 篇 控制科学与工程
    • 32 篇 生物工程
    • 25 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 14 篇 电气工程
    • 13 篇 化学工程与技术
    • 11 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
  • 134 篇 理学
    • 89 篇 数学
    • 37 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 24 篇 系统科学
    • 22 篇 物理学
    • 13 篇 化学
  • 46 篇 管理学
    • 29 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 3 篇 经济学
  • 2 篇 文学
  • 2 篇 军事学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 32 篇 pattern analysis
  • 30 篇 machine intellig...
  • 20 篇 neural networks
  • 18 篇 laboratories
  • 18 篇 machine learning
  • 15 篇 design engineeri...
  • 15 篇 system analysis ...
  • 13 篇 semantics
  • 12 篇 pattern recognit...
  • 11 篇 training
  • 10 篇 computational li...
  • 9 篇 image segmentati...
  • 9 篇 contrastive lear...
  • 9 篇 feature extracti...
  • 8 篇 learning
  • 8 篇 humans
  • 7 篇 object detection
  • 7 篇 reinforcement le...
  • 7 篇 convergence
  • 6 篇 neurons

机构

  • 80 篇 miit key laborat...
  • 66 篇 college of compu...
  • 27 篇 college of compu...
  • 19 篇 guangdong key la...
  • 18 篇 department of el...
  • 18 篇 department of el...
  • 17 篇 key laboratory o...
  • 16 篇 miit key laborat...
  • 14 篇 gaoling school o...
  • 14 篇 beijing key labo...
  • 13 篇 miit key laborat...
  • 11 篇 collaborative in...
  • 11 篇 school of comput...
  • 10 篇 department of st...
  • 9 篇 tsinghua univers...
  • 9 篇 school of data a...
  • 9 篇 pattern analysis...
  • 8 篇 pattern analysis...
  • 8 篇 college of compu...
  • 7 篇 pattern recognit...

作者

  • 47 篇 chen songcan
  • 23 篇 li piji
  • 23 篇 huang sheng-jun
  • 21 篇 ghojogh benyamin
  • 21 篇 karray fakhri
  • 21 篇 crowley mark
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 16 篇 sheng-jun huang
  • 16 篇 liang dong
  • 15 篇 m. kamel
  • 15 篇 ghodsi ali
  • 15 篇 songcan chen
  • 13 篇 zhou jie
  • 13 篇 lin yankai
  • 11 篇 tan xiaoyang
  • 9 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li peng

语言

  • 377 篇 英文
  • 14 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Pattern Analysis and Machine Intelligence"
393 条 记 录,以下是71-80 订阅
排序:
A segmentation method for sub-solid pulmonary nodules based on fuzzy c-means clustering
A segmentation method for sub-solid pulmonary nodules based ...
收藏 引用
2012 5th International Conference on Biomedical Engineering and Informatics, BMEI 2012
作者: Nie, Shengdong Li, Lihong Wang, Yuanjun He, Chaofan Ji, Feng Liang, Jianmei Institute of Medical Imaging Engineering University of Shanghai for Science and Technology Shanghai China Laboratory of Pattern Analysis and Machine Intelligence Shanghai Jiaotong University Shanghai China
Accurately and reliably automated segmentation of pulmonary tumors could play an important role in lung cancer diagnosis and radiation oncology work. However, it remains a very difficult task in particular for segment... 详细信息
来源: 评论
Characteristic AI Agents via Large Language Models  30
Characteristic AI Agents via Large Language Models
收藏 引用
Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
作者: Wang, Xi Dai, Hongliang Gao, Shen Li, Piji College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Technology Shandong University China
The advancement of Large Language Models (LLMs) has led to significant enhancements in the performance of chatbot systems. Many researchers have dedicated their efforts to the development of bringing characteristics t... 详细信息
来源: 评论
Deep Self-Reconstruction Sparse Canonical Correlation analysis For Brain Imaging Genetics
Deep Self-Reconstruction Sparse Canonical Correlation Analys...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Meiling Wang Wei Shao Shuo Huang Daoqiang Zhang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics
Brain imaging genetics is an emerging research field to explore the underlying genetic architecture of brain structure and function measured by different imaging modalities. As a bi-multivariate technique for brain im... 详细信息
来源: 评论
Forgetting, Ignorance or Myopia: Revisiting key Challenges in Online Continual Learning  38
Forgetting, Ignorance or Myopia: Revisiting Key Challenges i...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wang, Xinrui Geng, Chuanxing Wan, Wenhai Li, Shao-Yuan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China School of Computer Science and Technology Huazhong University of Science and Technology China
Online continual learning (OCL) requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting ...
来源: 评论
All-around Neural Collapse for Imbalanced Classification
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Enhao Li, Chaohua Geng, Chuanxing Chen, Songcan MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China Nanjing211106 China
Neural Collapse (NC) presents an elegant geometric structure that enables individual activations (features), class means and classifier (weights) vectors to reach optimal interclass separability during the terminal ph... 详细信息
来源: 评论
Exploiting Saliency in Attention Based Convolutional Neural Network for Classification of Vertical Root Fractures  25th
Exploiting Saliency in Attention Based Convolutional Neural ...
收藏 引用
25th International Conference on pattern Recognition Workshops, ICPR 2020
作者: Xu, Zhenxing Wan, Peng Aihemaiti, Gulibire Zhang, Daoqiang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Affiliated Stomatology Hospital of Medical School Nanjing University Nanjing China
Cone-beam computed tomography (CBCT) is widely used in clinical diagnosis of vertical root fractures (VRFs) which presents as crack on the teeth. However, manually checking the VRFs from a larger number of CBCT images... 详细信息
来源: 评论
Kernel based statistic: identifying topological differences in brain networks
收藏 引用
Intelligent Medicine 2022年 第1期2卷 30-40页
作者: Kai Ma Wei Shao Qi Zhu Daoqiang Zhang College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsMIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjingJiangsu 210016China
Background Brain network describing interconnections between brain regions contains abundant topological *** is a challenge for the existing statistical methods(e.g.,t test)to investigate the topological differences o... 详细信息
来源: 评论
Hybrid learning scheme for modular-based phoneme recognizer
Hybrid learning scheme for modular-based phoneme recognizer
收藏 引用
International Symposium on Signal Processing and Its Applications (ISSPA)
作者: Abbas Ahmadi Fakhri Karray Mohamed Kamel Pattern Analysis and Machine Intelligence Laboratory University of Waterloo Canada
This paper proposes a hybrid learning scheme for modular-based recognizer for a problem of phoneme recognition. The scheme is established by combining two types of classifiers which are statistical and neural network-... 详细信息
来源: 评论
Opposition-based Q(λ) algorithm
Opposition-based Q(λ) algorithm
收藏 引用
International Joint Conference on Neural Networks 2006, IJCNN '06
作者: Shokri, Maryam Tizhoosh, Hamid R. Kamel, Mohamed Pattern Analysis and Machine Intelligence Laboratory Department of Systems Design Engineering University of Waterloo 200 University Avenue West ON N2L 3G1 Canada Pattern Analysis and Machine Intelligence Laboratory Department of Electrical and Computer Engineering University of Waterloo 200 University Avenue West ON N2L 3G1 Canada
The problem of delayed reward in reinforcement learning is usually tackled by implementing the mechanism of eligibility traces. In this paper we introduce an extension of eligibility traces to solve one of the challen... 详细信息
来源: 评论
Causality-enhanced Discreted Physics-informed Neural Networks for Predicting Evolutionary Equations  33
Causality-enhanced Discreted Physics-informed Neural Network...
收藏 引用
33rd International Joint Conference on Artificial intelligence, IJCAI 2024
作者: Li, Ye Chen, Siqi Shan, Bin Huang, Sheng-Jun College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Physics-informed neural networks (PINNs) have shown promising potential for solving partial differential equations (PDEs) using deep learning. However, PINNs face training difficulties for evolutionary PDEs, particula...
来源: 评论