咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是151-160 订阅
排序:
Efficient Image Super-Resolution using Vast-Receptive-Field Attention
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China The University of Sydney Australia University of Macau China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Fast Algorithm for Parallel Solving Inversion of Large Scale Small Matrices Based on Gpu
SSRN
收藏 引用
SSRN 2022年
作者: Jin, Xuebin Chen, Yewang Fan, Wentao Zhang, Yong Du, Jixiang The College of Computer Science and Technology Huaqiao University Xiamen China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Soochow China College of Mechanical Engineering and Automation Huaqiao University Xiamen China
Inverting a matrix is time-consuming, and many works focus on accelerating inverting a single large matrix by GPU. However, the problem of inverting large-scale small matrices has little attention. In this paper, we p... 详细信息
来源: 评论
Blueprint Separable Residual Network for Efficient Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Macau China Shanghai AI Laboratory Shanghai China The University of Sydney Australia
Recent advances in single image super-resolution (SISR) have achieved extraordinary performance, but the computational cost is too heavy to apply in edge devices. To alleviate this problem, many novel and effective so... 详细信息
来源: 评论
A Simple yet Effective Network based on vision Transformer for Camouflaged Object and Salient Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Hao, Chao Yu, Zitong Liu, Xin Xu, Jun Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China The School of Computing and Information Technology Great Bay University Dongguan523000 China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The School of Statistics and Data Science Nankai University Tianjin300072 China
Camouflaged object detection (COD) and salient object detection (SOD) are two distinct yet closely-related computer vision tasks widely studied during the past decades. Though sharing the same purpose of segmenting an... 详细信息
来源: 评论
Multi-Task Learning with Deep Dual-Path Network for Facial Attribute recognition  2020
Multi-Task Learning with Deep Dual-Path Network for Facial A...
收藏 引用
Proceedings of the 2020 9th International Conference on Computing and pattern recognition
作者: Xinyu Lai Si Chen Da-Han Wang Shunzhi Zhu School of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding School of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding
Facial attribute recognition is a popular and challenging research topic in computer vision. In the traditional deep learning based attribute recognition methods, the mid-level network features and the differences bet... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation  39
Hybrid Data-Free Knowledge Distillation
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
VFHQ: A High-Quality Dataset and Benchmark for Video Face Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Xie, Liangbin Wang, Xintao Zhang, Honglun Dong, Chao Shan, Ying Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China ARC Lab Tencent PCG China
Most of the existing video face super-resolution (VFSR) methods are trained and evaluated on VoxCeleb1, which is designed specifically for speaker identification and the frames in this dataset are of low quality. As a... 详细信息
来源: 评论
LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
Towards Unifying Multi-Lingual and Cross-Lingual Summarization
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Jiaan Meng, Fandong Zheng, Duo Liang, Yunlong Li, Zhixu Qu, Jianfeng Zhou, Jie School of Computer Science and Technology Soochow University Suzhou China Pattern Recognition Center WeChat AI Tencent Inc China Beijing University of Posts and Telecommunications China Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China
To adapt text summarization to the multilingual world, previous work proposes multilingual summarization (MLS) and cross-lingual summarization (CLS). However, these two tasks have been studied separately due to the di... 详细信息
来源: 评论
A Survey of Person Re-identification Based on Deep Learning  2021
A Survey of Person Re-identification Based on Deep Learning
收藏 引用
2021 10th International Conference on Computing and pattern recognition
作者: Zimin Tian Si Chen Da-Han Wang Junwen Lu School of Computer and Information Engineering Xiamen University of Technology China and Fujian Key Laboratory of Pattern Recognition and Image Understanding China School of Computer and Information Engineering Xiamen University of Technology China
Person re-identification (Re-ID) has been a popular research topic in computer vision in recent years, and it has important application value in numerous fields, such as intelligent security. The person Re-ID task is ... 详细信息
来源: 评论