咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是201-210 订阅
排序:
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Dual-AI: Dual-path Actor Interaction Learning for Group Activity recognition
arXiv
收藏 引用
arXiv 2022年
作者: Han, Mingfei Zhang, David Junhao Wang, Yali Yan, Rui Yao, Lina Chang, Xiaojun Qiao, Yu ReLER AAII UTS United States National University of Singapore Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China RMIT University Australia University of New South Wales Australia Shanghai AI Laboratory Shanghai China
Learning spatial-temporal relation among multiple actors is crucial for group activity recognition. Different group activities often show the diversified interactions between actors in the video. Hence, it is often di... 详细信息
来源: 评论
Unsupervised Difference Learning for Noisy Rigid Image Alignment
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Yu-Xuan Feng, Dagan Shen, Hong-Bin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai 200240 China School of Computer Science University of Sydney Sydney2006 Australia
Rigid image alignment is a fundamental task in computer vision, while the traditional algorithms are either too sensitive to noise or time-consuming. Recent unsupervised image alignment methods developed based on spat... 详细信息
来源: 评论
Special Issue on Face Presentation Attack Detection
IEEE Transactions on Biometrics, Behavior, and Identity Scie...
收藏 引用
IEEE Transactions on Biometrics, Behavior, and Identity Science 2021年 第3期3卷 282-284页
作者: Wan, Jun Escalera, Sergio Escalante, Hugo Jair Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Computer Vision Center Universitat de Barcelona Barcelona08007 Spain Instituto Nacional de Astrofísica Óptica y Electrónica Puebla72840 Mexico Institute of Deep Learning Baidu Research Beijing100193 China Center for Ai Research and Innovation Westlake University Hangzhou310024 China
Face presentation attack detection, also termed Face Anti-Spoofing (FAS) [item 1), 2) in the Appendix), is a hot and challenging research topic that has received much attention from the computer vision and pattern rec... 详细信息
来源: 评论
Revisiting the Generalization Problem of Low-level vision Models Through the Lens of Image Deraining
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Jinfan You, Zhiyuan Gu, Jinjin Zhu, Kaiwen Xue, Tianfan Dong, Chao Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China The Chinese University of Hong Kong 999077 Hong Kong The University of Sydney NSW2006 Australia Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen University of Advanced Technology Shenzhen518055 China
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revis... 详细信息
来源: 评论
Exploring Fusion Strategies for Accurate RGBT Visual Object Tracking
arXiv
收藏 引用
arXiv 2022年
作者: Tang, Zhangyong Xu, Tianyang Li, Hui Wu, Xiao-Jun Zhu, XueFeng Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China The Center for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
We address the problem of multi-modal object tracking in video and explore various options of fusing the complementary information conveyed by the visible (RGB) and thermal infrared (TIR) modalities including pixel-le... 详细信息
来源: 评论
Reprogramming pretrained target-specific diffusion models for dual-target drug design  24
Reprogramming pretrained target-specific diffusion models fo...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Xiangxin Zhou Jiaqi Guan Yijia Zhang Xingang Peng Liang Wang Jianzhu Ma School of Artificial Intelligence University of Chinese Academy of Sciences and New Laboratory of Pattern Recognition (NLPR) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) Department of Computer Science University of Illinois Urbana-Champaign Department of Electronic Engineering Tsinghua University Institute for Artificial Intelligence Peking University Department of Electronic Engineering Tsinghua University and Institute for AI Industry Research Tsinghua University
Dual-target therapeutic strategies have become a compelling approach and attracted significant attention due to various benefits, such as their potential in overcoming drug resistance in cancer therapy. Considering th...
来源: 评论
NORPPA: NOvel Ringed seal re-identification by Pelage pattern Aggregation
arXiv
收藏 引用
arXiv 2022年
作者: Nepovinnykh, Ekaterina Chelak, Ilia Eerola, Tuomas Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering School of Engineering Science Lappeenranta-Lahti University of Technology Lut P.O.Box 20 Lappeenranta53851 Finland Department of Computer Science Faculty of Science University of Helsinki P.O. Box 4 Helsinki00100 Finland
We propose a method for Saimaa ringed seal (Pusa hispida saimensis) re-identification. Access to large image volumes through camera trapping and crowdsourcing provides novel possibilities for animal monitoring and con... 详细信息
来源: 评论
A Survey on Cross-Lingual Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Jiaan Meng, Fandong Zheng, Duo Liang, Yunlong Li, Zhixu Qu, Jianfeng Zhou, Jie School of Computer Science and Technology Soochow University Suzhou China Pattern Recognition Center WeChat AI Tencent Inc China Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Beijing University of Posts and Telecommunications Beijing China
Cross-lingual summarization is the task of generating a summary in one language (e.g., English) for the given document(s) in a different language (e.g., Chinese). Under the globalization background, this task has attr... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论