咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是211-220 订阅
排序:
CLIDSUM: A Benchmark Dataset for Cross-Lingual Dialogue Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Jiaan Meng, Fandong Lu, Ziyao Zheng, Duo Li, Zhixu Qu, Jianfeng Zhou, Jie Pattern Recognition Center WeChat AI Tencent Inc China School of Computer Science and Technology Soochow University Suzhou China Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Beijing University of Posts and Telecommunications Beijing China
We present CLIDSUM, a benchmark dataset towards building cross-lingual summarization systems on dialogue documents. It consists of 67k+ dialogue documents and 112k+ annotated summaries in different target languages. B... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
arXiv
收藏 引用
arXiv 2024年
作者: Wan, Xujie Li, Wenjie Gao, Guangwei Lu, Huimin Yang, Jian Lin, Chia-Wen The Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China The School of Automation Southeast University Nanjing210096 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multi-scale feat... 详细信息
来源: 评论
Research on the identification of obstacle image based on convolutional neural network
Research on the identification of obstacle image based on co...
收藏 引用
2021 International Conference on Signal Image Processing and Communication, ICSIPC 2021
作者: Zhongyu, Li Huajun, Wang Yuhang, Cao Yuting, Dai College of Geophysics Chengdu University of Technology Chengdu610059 China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University Chengdu610106 China College of Computer Science Chengdu Normal University Chengdu611130 China Artificial Intelligence Key Laboratory of Sichuan Province Zigong643000 China Key Laboratory of Interior Layout Optimization and Security Institutions of Higher Education of Sichuan Province Chengdu Normal University Chengdu Sichuan611130 China
To effectively realize the reasonable obstacle avoidance of the detection robot, VGG based obstacle discrimination method is proposed. Above all, the image captured by the robot is input into the multi-layer convoluti... 详细信息
来源: 评论
Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Xin Yuan, Kaishen Niu, Xuesong Shi, Jingang Yu, Zitong Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China Computer Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland Beijing Institute for General Artificial Intelligence Beijing100080 China School of Software Engineering Xi’an Jiaotong University Xi’an710049 China Great Bay University Dongguan523000 China
Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics as it helps to identify emotions expressed through facial expressions. Anatomically, there are innumerable correlations be... 详细信息
来源: 评论
HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional Network for Mitochondria Segmentation in EM Images
arXiv
收藏 引用
arXiv 2021年
作者: Yuan, Zhimin Ma, Xiaofen Yi, Jiajin Luo, Zhengrong Peng, Jialin College of Computer Science and Technology Huaqiao University Xiamen361021 China Department of Medical Imaging Guangdong Second Provincial General Hospital Guangzhou510317 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen361021 China
Background and objective: With the advancement of electron microscopy (EM) imaging technology, neuroscientists can investigate the function of various intracellular organelles, e.g, mitochondria, at nano-scale. Semant... 详细信息
来源: 评论
Multi-Unit Floor Plan recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
arXiv
收藏 引用
arXiv 2024年
作者: Kratochvila, Lukas de Jong, Gijs Arkesteijn, Monique Bilík, Šimon Zemčík, Tomáš Horak, Karel Rellermeyer, Jan S. Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic Department of Software Technology Faculty of Electrical Engineering Mathematics and Computer Science TU Delft Delft Netherlands Department of Management in the Built Environment Faculty of Architecture and the Built Environment TU Delft Delft Netherlands Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Dependable and Scalable Software Systems Institute of Systems Engineering Faculty of Electrical Engineering and Computer Science Leibniz University Hannover Hannover Germany
Digital twins have a major potential to form a significant part of urban management in emergency planning, as they allow more efficient designing of the escape routes, better orientation in exceptional situations, and... 详细信息
来源: 评论
RankSRGAN: Super resolution generative adversarial networks with learning to rank
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Lab Shanghai China
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
SliceProp: A Slice-Wise Bidirectional Propagation Model for Interactive 3D Medical Image Segmentation
SliceProp: A Slice-Wise Bidirectional Propagation Model for ...
收藏 引用
Medical Artificial Intelligence (MedAI), IEEE International Conference on
作者: Xin Xu Wenjing Lu Jiahao Lei Peng Qiu Hong-Bin Shen Yang Yang Department of Computer Science and Engineering Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China Department of Vascular Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Jiao Tong University Shanghai China
Interactive medical image segmentation methods have become increasingly popular in recent years. These methods combine manual labeling and automatic segmentation, reducing the workload of annotation while maintaining ...
来源: 评论