咨询与建议

限定检索结果

文献类型

  • 298 篇 会议
  • 287 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 591 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 403 篇 工学
    • 278 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 46 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 23 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 土木工程
    • 8 篇 安全科学与工程
  • 255 篇 理学
    • 102 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 65 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 23 篇 医学
    • 19 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 27 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 22 篇 umapada pal
  • 21 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 19 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 shivakumara pala...
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 554 篇 英文
  • 30 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
591 条 记 录,以下是231-240 订阅
排序:
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
Interactive Multi-dimension Modulation with Dynamic Controllable Residual Learning for Image Restoration  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Interactive image restoration aims to generate restored images by adjusting a controlling coefficient which determines the restoration level. Previous works are restricted in modulating image with a single coefficient... 详细信息
来源: 评论
A New Journey from SDRTV to HDRTV
A New Journey from SDRTV to HDRTV
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiangyu Chen Zhengwen Zhang Jimmy S. Ren Lynhoo Tian Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai AI Laboratory Shanghai
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
Inconsistency Distillation For Consistency:Enhancing Multi-View Clustering via Mutual Contrastive Teacher-Student Leaning
Inconsistency Distillation For Consistency:Enhancing Multi-V...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Dunqiang Liu Shu-Juan Peng Xin Liu Lei Zhu Zhen Cui Taihao Li Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China Zhejiang Lab Hangzhou China Xiamen Key Lab. of Computer Vision and Pattern Recognition Huaqiao University Xiamen China Key Lab. of Computer Vision and Machine Learning (Huaqiao University) Fujian Province University Xiamen China School of Information Sci. and Eng. Shandong Normal University Jinan China School of Computer Sci. and Eng. Nanjing University of Science and Technology Nanjing China
Multi-view clustering has attracted more attention recently since many real-world data are comprised of different representations or views. Recent multi-view clustering works mainly exploit the instance consistency to... 详细信息
来源: 评论
Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images  20th
Evaluation of Unconditioned Deep Generative Synthesis of Ret...
收藏 引用
20th International Conference on Advanced Concepts for Intelligent vision Systems, ACIVS 2020
作者: Kaplan, Sinan Lensu, Lasse Laaksonen, Lauri Uusitalo, Hannu Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT P.O. Box 20 Lappeenranta53850 Finland Department of Ophthalmology Faculty of Health and Biotechnology Tampere University and Tays Eye Center Tampere Finland
Retinal images have been increasingly important in clinical diagnostics of several eye and systemic diseases. To help the medical doctors in this work, automatic and semi-automatic diagnosis methods can be used to inc... 详细信息
来源: 评论
Enhanced Quadratic Video Interpolation  16th
Enhanced Quadratic Video Interpolation
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
Self-supervised multi-view stereo via effective co-segmentation and data-augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Qiao, Yu Kang, Wenxiong Wu, Qiuxia ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Lab Shanghai China South China University of Technology Guangzhou China
Recent studies have witnessed that self-supervised methods based on view synthesis obtain clear progress on multiview stereo (MVS). However, existing methods rely on the assumption that the corresponding points among ... 详细信息
来源: 评论
Graph Convolution Based Cross-Network Multi-Scale Feature Fusion for Deep Vessel Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Gangming Liang, Kongming Pan, Chengwei Zhang, Fandong Wu, Xianpeng Hu, Xinyang Yu, Yizhou The Department of Computer Science The University of Hong Kong Hong Kong Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Institute of Artificial Intelligence Beihang University Beijing China The AI Lab Deepwise Healthcare Beijing China Department of Cardiology of the Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China Key Laboratory of Cardiovascular of Zhejiang Province Hangzhou China
Vessel segmentation is widely used to help with vascular disease diagnosis. Vessels reconstructed using existing methods are often not sufficiently accurate to meet clinical use standards. This is because 3D vessel st... 详细信息
来源: 评论
Abstract: Learning to avoid poor images: towards task-aware c-arm cone-beam ct trajectories
Abstract: Learning to avoid poor images: towards task-aware ...
收藏 引用
International workshop on Algorithmen - Systeme - Anwendungen, 2020
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich Zürich Germany
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论
Machine Learning and computer vision Techniques in Continuous Beehive Monitoring Applications: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Bilik, Simon Zemcik, Tomas Kratochvila, Lukas Ricanek, Dominik Richter, Miloslav Zambanini, Sebastian Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Computer Vision Lab Institute of Visual Computing & Human-Centered Technology Faculty of Informatics TU Wien Favoritenstr. 9/193-1 ViennaA-1040 Austria
Wide use and availability of machine learning and computer vision techniques allows development of relatively complex monitoring systems in many domains. Besides the traditional industrial domain, new applications app... 详细信息
来源: 评论