咨询与建议

限定检索结果

文献类型

  • 300 篇 会议
  • 281 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 587 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 401 篇 工学
    • 275 篇 计算机科学与技术...
    • 250 篇 软件工程
    • 104 篇 信息与通信工程
    • 75 篇 生物工程
    • 70 篇 光学工程
    • 48 篇 机械工程
    • 44 篇 控制科学与工程
    • 43 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 22 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 256 篇 理学
    • 100 篇 物理学
    • 99 篇 数学
    • 88 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 113 篇 管理学
    • 64 篇 图书情报与档案管...
    • 53 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 24 篇 医学
    • 21 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 教育学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 21 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 18 篇 training
  • 16 篇 face recognition
  • 15 篇 deep learning
  • 15 篇 image segmentati...
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 13 篇 machine learning
  • 11 篇 visualization
  • 11 篇 pixels
  • 11 篇 shape
  • 10 篇 face
  • 9 篇 generative adver...
  • 9 篇 three-dimensiona...
  • 9 篇 benchmark testin...
  • 8 篇 object detection

机构

  • 47 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 shenzhen key lab...
  • 27 篇 national laborat...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 shanghai artific...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 pattern recognit...
  • 11 篇 college of compu...
  • 11 篇 gaoling school o...

作者

  • 63 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 23 篇 liu xin
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 21 篇 wang da-han
  • 20 篇 wang yali
  • 20 篇 pal umapada
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 zhu shunzhi
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun

语言

  • 508 篇 英文
  • 73 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory of Pattern Recognition and Computer Vision"
587 条 记 录,以下是241-250 订阅
排序:
Enhanced Quadratic Video Interpolation  16th
Enhanced Quadratic Video Interpolation
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
Self-supervised multi-view stereo via effective co-segmentation and data-augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Qiao, Yu Kang, Wenxiong Wu, Qiuxia ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Lab Shanghai China South China University of Technology Guangzhou China
Recent studies have witnessed that self-supervised methods based on view synthesis obtain clear progress on multiview stereo (MVS). However, existing methods rely on the assumption that the corresponding points among ... 详细信息
来源: 评论
Graph Convolution Based Cross-Network Multi-Scale Feature Fusion for Deep Vessel Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Gangming Liang, Kongming Pan, Chengwei Zhang, Fandong Wu, Xianpeng Hu, Xinyang Yu, Yizhou The Department of Computer Science The University of Hong Kong Hong Kong Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Institute of Artificial Intelligence Beihang University Beijing China The AI Lab Deepwise Healthcare Beijing China Department of Cardiology of the Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China Key Laboratory of Cardiovascular of Zhejiang Province Hangzhou China
Vessel segmentation is widely used to help with vascular disease diagnosis. Vessels reconstructed using existing methods are often not sufficiently accurate to meet clinical use standards. This is because 3D vessel st... 详细信息
来源: 评论
Abstract: Learning to avoid poor images: towards task-aware c-arm cone-beam ct trajectories
Abstract: Learning to avoid poor images: towards task-aware ...
收藏 引用
International workshop on Algorithmen - Systeme - Anwendungen, 2020
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich Zürich Germany
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论
Machine Learning and computer vision Techniques in Continuous Beehive Monitoring Applications: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Bilik, Simon Zemcik, Tomas Kratochvila, Lukas Ricanek, Dominik Richter, Miloslav Zambanini, Sebastian Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Computer Vision Lab Institute of Visual Computing & Human-Centered Technology Faculty of Informatics TU Wien Favoritenstr. 9/193-1 ViennaA-1040 Austria
Wide use and availability of machine learning and computer vision techniques allows development of relatively complex monitoring systems in many domains. Besides the traditional industrial domain, new applications app... 详细信息
来源: 评论
Corrigendum to “FGPNet: A weakly supervised fine-grained 3D point clouds classification network” [pattern recognition 139 (2023) 109509]
收藏 引用
pattern recognition 2024年 151卷
作者: Huihui Shao Jing Bai Rusong Wu Jinzhe Jiang Hongbo Liang the School of Computer Science and Engineering North Minzu University Yinchuan 750021 China the Key Laboratory of Images Processing and Pattern Recognition Laboratory Commission: IPPRLab North Minzu University Yinchuan 750021 China
来源: 评论
WHEN TO TRUST AGGREGATED GRADIENTS: ADDRESSING NEGATIVE CLIENT SAMPLING IN FEDERATED LEARNING
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Wenkai Lin, Yankai Zhao, Guangxiang Li, Peng Zhou, Jie Sun, Xu Center for Data Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Shanghai AI Lab China Tsinghua University Beijing China Pattern Recognition Center WeChat AI Tencent Inc. China MOE Key Lab of Computational Linguistics School of Computer Science Peking University China
Federated Learning has become a widely-used framework which allows learning a global model on decentralized local datasets under the condition of protecting local data privacy. However, federated learning faces severe... 详细信息
来源: 评论
Reflash Dropout in Image Super-Resolution
arXiv
收藏 引用
arXiv 2021年
作者: Kong, Xiangtao Liu, Xina Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China The University of Sydney Australia Shanghai AI Laboratory Shanghai China
Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a diffe... 详细信息
来源: 评论
A New Method for Detecting Altered Text in Document Images  1
收藏 引用
2nd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Lopresti, Daniel Seraogi, Bhagesh Chaudhuri, Bidyut B. Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Science and Engineering Lehigh University BethlehemPA United States
As more and more office documents are captured, stored, and shared in digital format, and as image editing software becomes increasingly more powerful, there is a growing concern about document authenticity. For examp... 详细信息
来源: 评论
A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yuanxin Meng, Fandong Lin, Zheng Li, Jiangnan Fu, Peng Cao, Yanan Wang, Weiping Zhou, Jie Institute of Information Engineering Chinese Academy of Sciences China MOE Key Laboratory of Computational Linguistics Peking University China School of Computer Science Peking University China School of Cyber Security University of Chinese Academy of Sciences China Pattern Recognition Center WeChat AI Tencent Inc China
Despite the remarkable success of pre-trained language models (PLMs), they still face two challenges: First, large-scale PLMs are inefficient in terms of memory footprint and computation. Second, on the downstream tas... 详细信息
来源: 评论